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Abstract

A Comprehensive Study of the Bound States of

Strontium Dimers on the 5s2 1S0 + 5s5p 1P1 Potential

Priyansh Lunia

This thesis provides a comprehensive analysis of the bound states of homonuclear strontium

dimers, for all of its naturally-occurring isotopes, on the 5s2 1S0 + 5s5p 1P1 potential. The

binding energies for nine new bound states of 88Sr are measured using photoassociative

spectroscopy and reported. These measurements, along with recent measurements for 84Sr,

86Sr, and 87Sr, are used to do a combined fit to the semiclassical LeRoy-Bernstein equation.

This allows for a combined analysis of the long-range part of the potential and enables

predictions for the binding energies of other weakly-bound states. Furthermore, from this

analysis, the value of the 1P1 atomic state lifetime is determined to be τ = 5.20 ± 0.02 ns,

which is consistent with previously determined values of the 1P1 atomic state lifetime.

The spectroscopic data of all four strontium isotopes is also used to fit the parameters

of a modified Lennard-Jones potential that provides a computationally complete picture

of the 1S0−1P1 potential. This modified Lennard-Jones potential is of the form V (r) =

σ/r12 − C3/r
3, where the potential parameters σ and C3 were determined using a least

squares fit, yielding an optimal value of C3 = 74.68 eV Å
−3
. Due to the computational

limitations, the value of σ was indeterminate. From the value of the long-range dispersion

coefficient C3, the value of the
1P1 atomic state lifetime is calculated to be τ = 5.21 ns, which

is consistent with the τ determined from LeRoy-Bernstein analysis.

The results of this thesis are expected to assist with further ultracold atomic physics

experiments using strontium.
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1 Introduction

Ultracold gases of the various isotopes of strontium serve as ideal model systems because the

individual particles and their interactions are are well-characterized, and in some cases, their

interactions can be precisely controlled. Hence, they are currently studied for a wide range

of applications, including optical frequency metrology, quantum simulation of many-body

physics, the study of Rydberg physics, and the study of cold collisions. The fermionic isotope

87Sr is of particular note due to its applications in creating precise optical atomic clocks. In

many of these experiments, ultracold samples of strontium are trapped in optical lattices in

order to prevent atom-atom interactions and introduce spatial periodicities. Photoassociative

spectroscopy, which involves studying the optical formation of a bound molecular state

from two initially free atoms, is a powerful and well-established technique used for probing

ultracold gases in optical lattices. Investigating the binding energies of strontium can provide

further insight into the underlying molecular potentials, which can then inform the design

of experiments using photoassociation to further probe quantum gases in optical lattices of

strontium. Another specific example is that the knowledge of the molecular potential and the

associated binding energies enables us to further specify the systematics of atomic clocks. At

a more fundamental level, getting an understanding of the underlying molecular potentials,

and comparing measurements with theory, tests our ability to calculate molecular binding

energies, which is essential for ultracold atomic physics experiments.

Most previous spectroscopic studies of strontium have been performed with the bosonic

isotopes, 84Sr, 86Sr, 88Sr [8, 9, 12]. In past studies of 88Sr dimers on the 1S0−1P1 potential,

fit parameters to the semiclassical LeRoy-Bernstein equation, which analytically describes

the binding energies of weakly-bound vibrational states as a function of the vibrational

quantum number, have been reported [12]. However, a comprehensive study of this particular

molecular potential for all four isotopes of strontium dimers has not been done before.

Recently, the first study of photoassociation on the fermionic isotope 87Sr has been published

by the Killian group [4], which included a combined LeRoy-Bernstein fit using spectroscopic
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data for 84Sr, 86Sr, and 87Sr that forms a component of this thesis. The combined LeRoy-Bernstein

fit is extended in this thesis to include newly-measured binding energies of 88Sr.

Furthermore, significant work has been done on determining the functional form and

parameters of the strontium ground state molecular potential. However, no study of a

general potential describing the 1S0−1P1 strontium molecular potential has been reported,

and thus, this is a focus of my thesis. A general Lennard-Jones potential describing all the

isotopes of strontium is expected to assist with further ultracold atomic physics experiments.

1.1 Description of the Potential

This thesis focuses on the 5s2 1S0 + 5s5p 1P1 potential. We start with two homonuclear

strontium atoms in their ground state (1S0 +
1S0), near the dissociation limit, D, with a large

internuclear separation, r. The attraction between the two atoms is predominantly described

by the attractive van der Waal’s force, which has a potential of the form V (r) = D−C6/r
6,

where C6 is a dispersion coefficient. A visualization of this potential is given by the blue

curve in Fig. 1.1. A single photon that is red-detuned to the 1S0−1P1 atomic resonance can

excite a single atom in the pair to the 1P1 state, resulting in a 1S0 +
1P1 bound state (this is

the process of single-photon photoassociation). In the long-range, the van der Waal’s force is

now dominated by the existence of a dipole-dipole interaction, and the long-range potential

between the atoms in the 1S0 + 1P1 dimer can be approximated as:

V (r) = D − C3

r3
+

h̄2[J(J + 1) + 2]

2µr2
(1.1)

where µ is the reduced mass of the dimer, and C3 is the long-range dispersion coefficient.

Neglecting nuclear spin, note that an atom’s state is given by the 2S+1LJ notation, where S is

the electronic spin, L is the electronic orbital angular momentum, and J is the total angular

momentum. In the ground state, S = J = 0, and because of selection rules, the molecular

excited state is restricted to J = 1. The rotational energy is small and so the rotational
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term in Eq. 1.1 can be neglected. This excited-state potential is shown by the orange curve

in Fig. 1.1. The total number of vibrational bound states on this potential is estimated to

be 350 ± 50 [11], and are numbered using the vibrational quantum number, ν, such that

ν = 1 corresponds to the most weakly-bound state and subsequent values correspond to

more deeply-bound states.

Figure 1.1: The potentials of relevance to this thesis: the initial potential between the ground-state
strontium atoms (blue), and the excited-state molecular potential (orange), which is the subject of
this thesis. The orange rungs in the 1S0−1P1 potential represent bound states.

1.2 Thesis Overview

The subject of this thesis is to provide a fully comprehensive analysis of the binding energies

of strontium dimers, for all of its naturally-occurring isotopes, on the 5s2 1S0 + 5s5p 1P1

potential. In chapter 2, photoassociative spectroscopy of 88Sr is described, and nine new

spectroscopic lines are reported. In chapter 3, these measurements taken for 88Sr are

combined with spectroscopic measurements taken for 84Sr, 86Sr, and 87Sr in [4] in a combined

fit of the binding energies of all four strontium isotopes to the LeRoy-Bernstein equation,

from which a value for the excited-state lifetime is extracted. Also using the spectroscopic

measurements of all four strontium isotopes, chapter 4 reports on the computation of a
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general Lennard-Jones potential that describes all the data. Finally, chapter 5 provides some

concluding remarks, and suggestions for future studies. Note that because a component of

the work done for this thesis was used in [4], a copy of the paper is included in appendix B

for reference.
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2 Photoassociative Spectroscopy

As briefly discussed in the introduction, photoassociative spectroscopy (PAS) is a powerful

technique that in trapped laser-cooled gases can probe molecular potentials and provide an

accurate determination of atomic state lifetimes. Photoassociation is the process by which

one or more resonant laser fields illuminates an ultracold trapped gas of interacting atoms

that can lead to the association of two initially free atoms to form a bound molecular excited

state. As shown in Fig. 2.1, this is a resonant process — when viewed in the center-of-mass

Figure 2.1: The photoassociation process. Figure adapted from [1].

frame of the two atoms, the sum of the initial kinetic energies of the two atoms involved and

the energy of the absorbed photon (h̄fbound in Fig. 2.1) add up to the energy of the bound

state in the excited-state potential (in this case the 1S0−1P1 potential). This process results

in atom loss from the trap, which can happen in three ways: firstly, the formed 1S0 + 1P1

dimer can simply escape the trap as it is no longer resonant with the trap’s laser frequency;

the 1S0 +
1P1 dimer can decay and both atoms escape the trap with greatly increased kinetic

energy (in other words, energy greater than the trap depth); the 1S0 +
1P1 dimer can decay

and the atoms can collide with other ground-state atoms, thus knocking them out of the
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trap. Hence, trap loss is seen as evidence of photoassociation. PAS involves scanning the

laser frequency (incrementally adjusting the PA laser frequency, fPA), and measuring atom

number at each frequency. Frequencies at which peak atom loss is observed are resonant

frequencies — these allow us to determine the binding energies of the bound states. These

binding energies, E(ν), are reported red-detuned from the 1S0 → 1P1 atomic resonance, and

are given by h̄(ffree − fbound). In this work, E(ν) are reported as positive numbers in GHz.

Thus far, PAS has been used by the Killian group to measure the binding energies of all

four isotopes of strontium, where the most recent measurements were taken for 84Sr, 86Sr,

and 87Sr in [4]. While PAS for 88Sr has been performed by the Killian group previously,

measuring the binding energies was not the focus of that work [9]. In addition, with further

refinements having been made to the apparatus to take measurements for [4], my objective

here is to use PAS to measure the binding energies of 88Sr for previously unreported lines on

the 1S0−1P1 potential.

2.1 Experimental Procedure

For the PAS of 88Sr done as a part of this thesis, the experimental procedure is akin to

that described in section II of [4]. Ultracold strontium atoms were first trapped in an optical

dipole trap and photoassociation was performed after a short evaporation stage. For 88Sr, the

baseline number of trapped atoms was ∼ 2× 106, which resulted in a typical atom density

of ∼ 1× 1013 cm−3. As noted in the previous section, atom loss from the trap is seen as

evidence of photoassociation — peak atom loss due to photoassociation was observed to be

15− 40%.

For each transition line, the PA laser frequency was fixed to a setpoint in the vicinity of

the predicted value1. The frequency of the PA laser is adjusted by detuning the frequency

from the setpoint — denoted as ∆fset in this discussion. For each ∆fset, a measurement of

1 Initial predictions of binding energies were computed using LeRoy-Bernstein analysis from previous
spectroscopic data presented in Fig. 2b of [9]. LeRoy-Bernstein analysis for data-taking is described in more
detail in chapter 3.1.
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the PA laser energy was taken on the Exfo WA-1500 wavemeter in units of spectroscopic

wavenumbers (ν̃ = 1/λ, units: cm−3). A simplified schematic is shown in Fig. 2.2. The

wavemeter is calibrated against the 1S0 → 1P1 atomic resonance.

Figure 2.2: Simplified schematic of the experimental setup adapted from [3]. The PA laser is
fixed to a setpoint, and adjusted by changing the detuning from the setpoint. The PA laser is split,
with one ray going to the atomic sample, and another ray going to the Exfo WA-1500 wavemeter.
Thus, for every ∆fset, we have a measurement of ν̃.

For each transition line, between 3-7 scans across the predicted value were done. Since

the PA laser energy is slightly different for each scan due to drifts, the mean and standard

error of ν̃ over all scans for each ∆fset was calculated. In order to convert between ∆fset

and ν̃, a linear interpolation of ∆fset and average ν̃ is done, an example for which is shown

in Fig. 2.3.

Measurements of atom number were taken with resonant time-of-flight absorption imaging

[4], for each ∆fset. Each measurement of atom number for a particular ∆fset requires a new

atomic sample to be prepared. For each transition line, the mean and standard error over

all scans of atom number was calculated, and was fit to a Lorentzian lineshape to extract
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Figure 2.3: An example fit of the wavemeter reading against the detuning from setpoint. Using
this linear interpolation, we can convert between ∆fset and ν̃ for a particular transition line. This
particular fit is for the measured ν = 68 bound state (see Table 2.1).

the center frequency. Note that the atom loss is affected by both the molecular resonances

and off-resonance atomic excitations, hence, we see a general decline in atom loss as we scan

closer to the 1S0 → 1P1 atomic resonance. This is implemented as a linear background added

on to the Lorentzian lineshape:

N =
c1
π

1
2
c2

(x− c3)2 + (1
2
c2)2

+ c4x+ c5 (2.1)

where N is the number of atoms, c1 is the amplitude, c2 is the full-width half-max of the

lineshape, c3 is the linecenter, c4 is the linear background gradient, and c5 is the linear

background intercept. The extracted value of c3, and its corresponding standard error, are

taken as the value and uncertainty of the binding energy in units of ∆fset — this is converted

to units of ν̃ using the linear interpolation described in Fig. 2.3. Finally, we can report the

binding energies in terms of detuning from the 1S0 → 1P1 atomic resonance by using the
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equation2:

E(ν) = h̄c (ν̃free − ν̃c3) (2.2)

where c is the speed of light in cm s−1, ν̃free is the wavenumber (in cm−1) corresponding to

the 1S0 → 1P1 atomic transition, and ν̃c3 is the wavenumber (in cm−1) corresponding to the

linecenter, c3, extracted from Eq. 2.1.

2.2 Binding Energies of 88Sr on the 1S0−1P1 Potential

We start by measuring the energy corresponding to the 1S0 → 1P1 atomic transition since it is

necessary for calibrating the wavemeter and reporting the binding energies of 88Sr dimers as

given in Eq. 2.2. Using the most accurate reported value for the 1S0 → 1P1 atomic transition

of 21 698.452±0.004 cm−3 [10], we calibrated the reading of the laser energy correspondingly.

Fig. 2.4 shows the atom loss against wavenumber for this measurement.

Figure 2.4: Measurement of the atomic resonance. Note that the peak atom loss is 100% since
all atoms in the trap were ejected from the trap due to scattering photons.

2 Note that the vibrational quantum number, ν, and spectroscopic wavenumbers, ν̃, are unrelated, distinct
quantities — the repetition of the Greek letter ‘ν’ is an unfortunate result of conventional notation.
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In this work, we measure and report the binding energies of subsequent states as presented

in Fig. 2 of [9]. Specfically, we identify nine previously unreported PAS lines, which are

presented in Table 2.1. In order to better constrain the fit to the LeRoy-Bernstein equation,

which is done in the next chapter, data was specifically taken for larger detunings in the

range of ∼ 15− 20 GHz as well (the final three rows in Table 2.1).

Table 2.1: Measured binding energies of 88Sr on the 5s2 1S0 + 5s5p 1P1 potential. σE are the
propagated uncertainties of E(ν).

ν E(ν) [GHz] σE [GHz]

65 2.581 0.004
66 2.823 0.006
67 3.076 0.004
68 3.371 0.004
69 3.682 0.004
71 4.357 0.006
89 16.944 0.004
90 18.083 0.005
92 20.633 0.004

Fig. 2.5 shows the representative atom-loss spectra for the more weakly-bound states

measured (the first six rows in Table 2.1). Furthermore, Fig. 2.6 shows two example fits of

data to Eq. 2.1 for ν = 66 and ν = 89.

Figure 2.5: Representative atom-loss spectra. Lines connect the data points to guide the eye.
The background atom number for each line is individually normalized to be one.
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(a) Weaker bound state (ν = 66).

(b) More deeply bound state (ν = 89).

Figure 2.6: Example fits of data to Eq. 2.1 for (a) a more weakly-bound state (ν = 66), (b) a
more deeply-bound state (ν = 89). The atom number is individually normalized for each transition
line such that the value of the linear background at the linecenter is taken to be one. In both plots,
we see a linear background that decreases for detunings closer to the atomic resonance, with a more
pronounced effect visible in (a), as expected.

Ultimately, in this section, we have reported nine new measured binding energies of 88Sr

on the 1S0−1P1 potential using PAS. Combining this data with existing PAS data from [4],

we can perform analysis of the binding energies and the underlying molecular potential.
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3 LeRoy-Bernstein Analysis

Having taken spectroscopic data for all four isotopes of strontium, it is now possible to find

a general model that describes the binding energies of the bound states of strontium dimers.

For a potential with a long-range form given by Eq. 1.1, and neglecting the rotational energy,

a semiclassical treatment leads to the so-called LeRoy-Bernstein formula, shown in Eq. 3.1.

This gives the binding energies, E(ν), of vibrational states close to the dissociation limit (or

atomic resonance), D, as a function of vibrational quantum number [7].

E(ν) = D − [(νD − ν)H3]
6 , H3 =

1

C
1
3
3

h̄Γ
!
4
3

"

2Γ
!
5
6

"
#

2π

µ
, C3 =

3h̄λ3

16π3τ
(3.1)

Here: ν is the vibrational quantum number such that ν = 1 corresponds to the most

weakly-bound state; νD is an effective vibrational index between 0 and 1; Γ is the gamma

function; µ is the reduced mass of the strontium dimer; λ is the wavelength corresponding

to the 1S0 → 1P1 atomic transition, and is given by 460.86 nm [10]; τ is the 5s5p 1P1 atomic

state lifetime.

For our case, it is important to note that Eq. 3.1 is only valid for weakly-bound states,

and does not hold for more deeply-bound states. Since our measurements are taken with

respect to the atomic resonance such that D is set to zero, and the binding energies are

quoted as positive numbers, the measurements from PAS are fit to the functional form:

E(ν) = [(νD − ν)H3]
6 (3.2)

The objective here is to do a combined fit for all the isotopes of strontium to the LeRoy-Bernstein

equation, where ‘combined’ specifically refers to the fact that spectroscopic data for all

the isotopes is fit to the same C3 coefficient, which results in the same value for the

excited-state lifetime for all the isotopes. The νD values for each isotope are independently

fit. The simplified LeRoy-Bernstein equation (Eq. 3.2) therefore describes the binding
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energies of the weakly-bound molecular states for each strontium isotope as a function of

the vibrational quantum number, from which a value for τ can be extracted. This fitting

process was implemented in Python, using the scipy.optimize.curve_fit method which

uses non-linear least squares to fit a function to data. It minimizes the chi-squared function

χ2 =
$

i

(Mi − Fi)
2

σ2
i

(3.3)

where Mi are the spectroscopic measurements, σi are the uncertainties in the measurements,

and Fi are the fit binding energies given by Eq. 3.2.

3.1 LeRoy-Bernstein Analysis During Data-taking

While the central objective of this chapter is to fit the spectroscopic data of all four strontium

isotopes to the functional form in Eq. 3.2, which is the topic of the subsequent section, it

is informative to take a quick detour and discuss three utilities of LeRoy-Bernstein analysis

which was extremely useful during the data-taking process (both for the measurements taken

in the previous chapter, as well as for [4]).

Firstly, for every round of spectroscopic data taken, the extracted binding energies

were fit to the LeRoy-Bernstein equation. From this, τ was extracted and compared to

values found from previous studies to check that appropriate values of binding energies were

being measured [8, 9, 12]. Furthermore, fitting measurements also allowed us to check that

appropriate values of νD were being obtained to make sure that the quantum numbers ν

were being assigned to the bound levels properly. This was an ongoing process where fits

were continuously done to new, incoming data.

Next, the fits also allowed us to generate predictions for binding energies for other

bound states. As mentioned in chapter 2, the LeRoy-Bernstein fitting program was run

periodically every time spectroscopic lines were found to allow for a more precise prediction of

wavenumbers to scan for new lines. Since every instance of PAS for a particular wavenumber
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requires a new sample of strontium atoms to be created, scanning a large range of wavenumbers

with small increments can be time-consuming. Thus, predictions from LeRoy-Bernstein

equation allowed for more focused data-taking, where we were able to scan a more precise

range of wavenumbers with smaller increments to better determine the linecenter, and thus

the binding energy.

Finally, fitting to Eq. 3.2 allowed for systematic/calibration errors in the apparatus to be

identified. We found a better estimate for such errors by allowing for an extra fit parameter:

E(ν) = [(νD − ν)H3]
6 +K (3.4)

where K is a binding energy offset. This was especially crucial in the first few rounds of

data-taking in [4] as the K value was found to be on the order of several hundred megahertz,

and the corresponding sources of the offset were identified and fixed.

3.2 Published Results from Photoassociative Spectroscopy of 87Sr

As stated previously, a component of the work done for this chapter was included in the

Killian lab’s paper on the Photoassociative Spectroscopy of 87Sr [4]. This paper included a

combined LeRoy-Bernstein fit of PAS data of 84Sr, 86Sr, and 87Sr, and is presented in this

section. The combined fit is shown in Fig. 3.1a with fit residuals for each isotope. Table

3.1 describes the fit parameters of this combined fit. Tables of observed binding energies of

84Sr, 86Sr, and 87Sr are provided in appendix A for reference.

Table 3.1: Fit parameters for the combined fit of binding energies of 84Sr, 86Sr, 87Sr to Eq. 3.2.

Isotope νD τ [ns]

84Sr 0.872± 0.016
5.202± 0.00286Sr 0.203± 0.016

87Sr 0.866± 0.018

An important point to note from the fit described in Table 3.1 is that although the
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(a) Data fit to Eq. 3.2. (b) Data fit to Eq. 3.4.

Figure 3.1: Fit of the binding energies of states on the 5s2 1S0 + 5s5p 1P1 molecular potential
for all four strontium isotopes. Plots (a-c) of both subfigures show the residuals of the fit for 84Sr,
86Sr, and 87Sr, respectively. Plot (d) of both subfigures shows the measured binding energies of
87Sr as a function of ν, where the dashed line is the best fit of the data to the corresponding model.

statistical uncertainty in τ is small (around 0.04%), we can see from Fig. 3.1a that the fit

residuals shown in plots (b-c) show a systematic trend corresponding to ∼100 MHz variation

over a change of ∼100 GHz in binding energy. This trend might indicate a systematic error in

the measurement tool, such as the wavemeter accuracy degrading the further we get from the

wavenumber at which it was calibrated. It may also be a result of variation in molecular-state

AC Stark shifts from the optical dipole trap laser fields, or the influence of additional terms

in the molecular potential not accounted for by the LeRoy-Bernstein formula. To determine

a better estimate of the uncertainty in τ given in Table 3.1, we fit the data again, but this

time to Eq. 3.4, allowing for each isotope to be fit to its own K. The values of K for each

isotope are shown in Table 3.2, and the fit is shown in Fig. 3.1b.

From Table 3.2, we see that the binding energy offset for the 86Sr and 87Sr datasets is on
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Table 3.2: Offsets for the combined fit of binding energies to Eq. 3.2 for 84Sr, 86Sr, and 87Sr.

Isotope Offset [GHz]

84Sr 0.043± 0.013
86Sr 0.137± 0.015
87Sr 0.139± 0.014

the order of ∼140 MHz, whereas for 84Sr it is on the order of ∼40 MHz, which corroborates

the trend observed in plots (a-c) of Fig. 3.1a. As we can see from the corresponding plots in

Fig. 3.1b, fitting to Eq. 3.4 removed the systematic trends in the residuals. The extracted

value of τ increased by 0.02 ns or 0.4%, which we take as our uncertainty. We thus quote

our final value of the excited state lifetime as τ = 5.20± 0.02 ns. The value of τ determined

here differs by 1% from the most accurate reported measurement of τ = 5.263 ± 0.004 ns,

performed with photoassociation in an optical lattice [12], and is in closer agreement with

a more recent value of τ = 5.234 ± 0.008 ns determined from AC Stark shifts of strontium

levels [2].

3.3 Combined Fit of All Strontium Isotopes

Using the PAS data collected for 88Sr in chapter 2, along with the PAS data for 84Sr,

86Sr, and 87Sr from [4], we can achieve the central objective of this chapter: obtaining a

LeRoy-Bernstein model for all four isotopes of strontium on the 5s2 1S0 + 5s5p 1P1 molecular

potential. The parameters for this combined fit are described in Table 3.3, and the plot is

shown in Fig. 3.2a. A table of observed values, fit values, fit residuals, and RMSE of the fit

is provided in appendix A for reference.
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Table 3.3: Fit parameters of the combined fit of binding energies of all four isotopes to Eq. 3.2.

Isotope νD τ [ns]

84Sr 0.874± 0.035

5.201± 0.004
86Sr 0.187± 0.036
87Sr 0.850± 0.039
88Sr 0.493± 0.026

(a) Data fit to Eq. 3.2. (b) Data fit to Eq. 3.4.

Figure 3.2: Fit of the binding energies of states on the 5s2 1S0 + 5s5p 1P1 molecular potential
for all four strontium isotopes. Plots (a-d) of both subfigures show the residuals of the fit for 84Sr,
86Sr, 87Sr, and 88Sr, respectively. Plot (e) of both subfigures shows the measured binding energies
of 88Sr as a function of ν, where the dashed line is the best fit of the data to the corresponding
model.

Note that in plots (b-d) we observe the same systematic deviation in the fit residuals as

seen in the previous section. As such, the same treatment is done, allowing for a binding

energy offset to be fit individually for each isotope; the combined fit to Eq. 3.4 is shown in
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Fig. 3.2b. Table 3.4 shows the value of K for each isotope.

Table 3.4: Offsets for the combined fit of binding energies to Eq. 3.4 for all four strontium
isotopes.

Isotope Offset [GHz]

84Sr 0.029± 0.038
86Sr 0.136± 0.045
87Sr 0.115± 0.041
88Sr 0.067± 0.010

We see that the offsets (incorporating uncertainties) for 84Sr, 86Sr, and 87Sr in Table

3.3 are comparable to the corresponding offsets in Table 3.2, and the offset for 88Sr is on

the order of ∼70 MHz. Although sources of systematic/calibration errors in the apparatus

were identified and fixed in the preliminary stages of data-taking, as described at the end of

section 3.1, it appears that there is some persistent systematic source of offset, the possible

sources of which were identified in section 3.2. Furthermore, similar to the combined fit

with offset shown in Fig. 3.1b in the previous section, the combined fit shown in Fig. 3.2b

increased the extracted value of τ by 0.02 ns or 0.4%, which we take as our uncertainty.

Thus, after incorporating the PAS data for 88Sr, we find the same value of τ as in [4]:

τ = 5.20± 0.02 ns

Ultimately, in this chapter, we have found a LeRoy-Bernstein model to describe the

weakly-bound states of all four isotopes of strontium on the 5s2 1S0 + 5s5p 1P1 potential.

The LeRoy-Bernstein model in Eq. 3.2 with the νD and τ fit parameters described in Table

3.3 can be used to generate predictions for the binding energies of other weakly-bound states

of strontium on this particular potential. However, as stated in [6], Eq. 3.1 is a semiclassical

approximation and the predictions are valid for ranges of ν which were used to fit Eq. 3.4. For

a more accurate determination of predicted binding energies and τ , a quantum mechanical

integration of the molecular potential is required, which is the subject of the next chapter.
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4 An Effective Lennard-Jones Potential

The second major computational component of this project is finding an effective potential

to describe all the data. This will allow for specific binding energies and corresponding

wavefunctions to be computed by solving the radial Schrödinger equation (Eq. 4.1).

− h̄2

2µ

∂2u

∂r2
+ V (r)u+

h̄2[J(J + 1) + 2]

2µr2
= Eu (4.1)

As noted in chapter 1.1, only J = 1 states are excited, and the rotational term in Eq. 4.1

is negligible. We will use an approximate functional form for the potential in the form of a

modified Lennard-Jones potential, given by:

V (r) =
σ

r12
− C3

r3
(4.2)

where σ and C3 are the parameters to find, and C3 is the same parameter as denoted

Eq. 3.1. The σ term controls the inner wall of the potential and the C3 term controls

the long-range behavior of the potential. Essentially, this potential can be put into the

Schrödinger equation, and the eigenenergies, E, and corresponding eigenstates, u, can be

solved for numerically. This provides a computationally complete picture of the strontium

5s2 1S0 + 5s5p 1P1 molecular potential. While this thesis was not able to fully determine

the potential’s parameters, a simple computational method is provided for future work to

build off of.

4.1 Fit Procedure

Thus far, significant work has been done in determining the functional form of the ground-state

molecular potential — the codebase developed in [5] was used to compute an improved

determination of the ground-state molecular potential, and a similar, simplified version of

the fit procedure is used in this thesis. The procedure to compute the values of σ and C3 will
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be done by optimizing these parameters, where the binding energies of 84Sr, 86Sr, 87Sr, and

88Sr measured from PAS will be compared to the solutions to the Schrödinger equation for

the same states, and the parameters will be adjusted iteratively to minimize the difference

between the calculated and measured results.

4.1.1 Description of the Numerical Method

In order to solve Eq. 4.1 numerically, we must rearrange and discretize the equation. The

second derivative is approximated as a centered finite difference. The discretized version of

Eq. 4.1 is given by:

−∂2u

∂r2
+

2µ

h̄2 V (r)u =
2µ

h̄2Eu

=⇒ −ui−1 + 2ui − ui+1

δ2
+

2µ

h̄2 Viui =
2µ

h̄2Eui

=⇒ −ui−1

δ2
+

%
2

δ2
+

2µ

h̄2 Vi

&
ui −

ui+1

δ2
=

2µ

h̄2Eui (4.3)

where we use a grid of N + 1 equally-spaced radial coordinates ri, i = 0, ..., N , and the

grid spacing is denoted by δ. For brevity, we define ui := u(ri) and Vi := V (ri). We must

also consider the boundary conditions, that is, what happens at u0 and uN . The actual

wavefunctions, u, exponentially decay in the classically forbidden regions such that:

u(r → ±∞) = 0 (4.4)

For a numerical scheme, Eq. 4.4 can be approximated by the Dirichlet boundary conditions,

u0 = uN = 0. It is necessary to extend the radial coordinate grid far enough into the

classically forbidden regions for the Dirichlet boundary conditions to be sufficiently accurate

approximations to Eq. 4.4. For the left boundary condition, due to the 1/r12 behavior of

the potential in the short range, it is not necessary to extend far into the inner classically

forbidden region before the wavefunction starts to decay sufficiently, and so r0 = 0.5 Å was

found to be suitable.
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Having discretized the equation, and having defined the endpoints of the grid, we can

write Eq. 4.3 as a system of N − 1 linear equations in matrix form:

'

((((((()

!
2
δ2

+ 2µ
h̄2V1

"
− 1

δ2
0

− 1
δ2

. . . . . .

. . . . . . − 1
δ2

0 − 1
δ2

!
2
δ2

+ 2µ
h̄2VN−1

"

*

+++++++,

'

((((((()

u1

...

...

uN−1

*

+++++++,

=
2µ

h̄2E

'

((((((()

u1

...

...

uN−1

*

+++++++,

(4.5)

with u0 = uN = 0. Eq. 4.5 is a matrix-eigenvalue equation, where the eigenvalues are given

by:

λ =
2µ

h̄2E (4.6)

Thus, by finding the eigenvalues of the matrix in Eq. 4.5, we can rearrange Eq. 4.6 to

find the eigenenergies of Eq. 4.1. There exists a plethora of optimized numerical linear

algebra libraries in Python that can be used to solve for the eigenvalues in Eq. 4.5. Since

the matrix we are concerned with is a symmetric tridiagonal matrix, we can employ the

scipy.linalg.eigvalsh_tridiagonal routine which is specifically optimized to calculate

the eigenvalues of such matrices. It is important to note that, depending on the number

of grid points used, many more eigenvalues will be computed by this routine than there

are physical bound states — these computed eigenvalues must be sorted to the return the

eigenvalues corresponding to physically valid states. Since a bound state cannot exceed

the depth of the potential, Vmin, the routine is set to return eigenvalues between 0 and

2µ|Vmin|/h̄2.

4.1.2 Fitting Algorithm

A least squares fit can be done done to optimize the parameters σ and C3 in Eq. 4.2. First,

the binding energies corresponding to the same vibrational quantum numbers as from the

PAS data are found by numerically solving the Schrödinger equation (Eq. 4.5) using the
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method outlined in the previous section. A comparison of the binding energies from the PAS

data and numerical solutions is done using the following cost function:

F =
1

2

$

i

(Ki −Mi)
2 (4.7)

where Ki are the numerically calculated binding energies and Mi are the binding energies

measured using PAS. The optimization of Eq. 4.7 is implemented in Python using the

scipy.optimize.least_squares method, which terminates when a local minimum of the

cost function is found.

4.2 Discussion of Method

As mentioned at the beginning of the chapter, the simple method discussed here yielded

indeterminate results for the potential’s parameters. While a benefit of the method outlined

is that it is very straightforward, and thus easy to implement, a major drawback is its

computational complexity. As the number of grid points is increased, the time complexity

of the computation scales as ∼ N3. At the same time, without using a large number of

grid points, it is difficult to resolve the deeply-bound states, which leads to an inaccurate

computation of the eigenvalues in Eq. 4.6 and the corresponding eigenenergies.

A preliminary run of the fitting algorithm was done, with starting values of σ = 0.5 eV Å
−12

and C3 = 75 eV Å
−3
. The starting value of σ was chosen as it provided a large inner wall,

and resulted in ∼ 350 bound states between the values between 0 and 2µ|Vmin|/h̄2 for each

isotope; the starting value of C3 was chosen by using Eq. 3.1 with the value of the 1P1 atomic

state lifetime as determined from chapter 3. The least squares fit terminated at the same

value of σ and an optimized value of C3 = 74.68 eV Å
−3
, which is equivalent to τ = 5.21 ns.

This value falls within the uncertainty ranges of the derived value of τ from chapter 3.

However, when looking at the computed eigenenergies using these parameter values, it

was found that for the more deeply-bound states, the residuals, compared to the observed
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values from PAS, were extremely large. These residuals are shown in Fig. 4.1.

Figure 4.1: The residuals found when using the values σ = 0.5 eV Å
−12

and C3 = 74.68 eV Å
−3

.
As more deeply bound states are considered, the values of the residuals explode. A similar trend
is observed for all four isotopes.

Even though the least squares fitting algorithm terminated, a global minimum was not

found, as indicated by the large residuals seen in Fig. 4.1. Therefore, adjustments to the

numerical method discussed in this section need to be made in order to better determine the

value of σ in the potential.
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5 Conclusion

Ultimately, this thesis analyzes the bound states of homonuclear strontium dimers, for all of

its naturally-occurring isotopes, on the 5s2 1S0 + 5s5p 1P1 potential. The experimental work

presented in chapter 2 illustrated the use of PAS as a powerful probe of molecular potentials,

and nine new transition lines of 88Sr were reported. Using these spectroscopic measurements,

as well as those of 84Sr, 86Sr, 87Sr from [4], a combined fit of the acquired PAS data to the

semiclassical LeRoy-Bernstein equation was performed. From this analysis, a model for the

weakly-bound states of all four strontium isotopes on the excited-state potential was derived,

the parameters for which are presented in Table 3.3. Furthermore, from the combined fit,

the 1P1 atomic state lifetime was found to be τ = 5.20 ± 0.02 ns, which is within 1% of

previously determined values of τ [2, 12].

As discussed at the end of chapter 3.2, there were potential sources of offset in the

experimental apparatus. These offsets were different for each isotope, and are shown in

Table 3.4. Future works should further investigate these sources of offset in order to better

specify a model for the weakly-bound states of strontium dimers on the 1S0−1P1 potential,

and better determine a value for τ .

While a computational model to determine the parameters σ and C3 was described, due

to computational limitations, it returned an indeterminate value of σ, as discussed in chapter

4.2. For future studies with the aim of refining the values of the parameters σ and C3, further

analysis into determining the most optimal hyperparameters (namely the right endpoint, and

the number of grid points) should be done. Another remedy may be found in using a more

robust computational method to solve the Schrödinger equation. The work done in [5] used

the Johnson renormalized Numerov method which found success in refining the parameters

of the strontium ground-state molecular potential — this codebase can be adapted for the

deeper excited-state potential.

Although issues were encountered in the computation of an effective Lennard-Jones

potential, the work in this thesis has nevertheless provided a more comprehensive understanding
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of the 5s2 1S0 + 5s5p 1P1 molecular potential by performing a combined analysis of all four

naturally-occurring strontium isotopes. The work done in this thesis illustrates the use of

PAS to measure binding energies, which can be used to measure the binding energies of other

weakly-bound states, and provides a starting point for future studies seeking to determine

an effective Lennard-Jones potential that describes all the data.
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A Binding Energies for All Observed Transitions

The tables in this appendix contain binding energy observed values, fit values, fit residuals,

and RMSE of the fits for all observed transitions, both from the PAS conducted for this

thesis and for [4]. The fit values are obtained from a combined fit of all four strontium

isotopes. Note that:

• Eobs refers to the observed binding energies from PAS, and σE is the uncertainty in

the observed binding energy,

• E1(ν) refers to the fit to Eq. 3.2, and δ1 are the residuals corresponding to this fit,

• E2(ν) refers to the fit to Eq. 3.4, δ2 are the residuals corresponding to this fit,

In addition to the fit binding energies, the parameters νD and τ are also reported for each

isotope, for each fit.
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Table A.1: Binding energies of 84Sr on the 5s2 1S0 + 5s5p 1P1 potential.

ν Eobs [GHz] σE [GHz]
Fit to Eq. 3.2 Fit to Eq. 3.4

E1(ν) [GHz] δ1 [GHz] E2(ν) [GHz] δ2 [GHz]

76 7.312 0.028 7.278 0.034 7.260 0.052

77
7.917 0.030 7.879 0.039 7.859 0.059

7.908 0.025 7.941 -0.033 7.921 -0.013

78 8.523 0.026 8.520 0.003 8.498 0.025

79 9.210 0.028 9.205 0.004 9.181 0.029

80
9.893 0.026 9.935 -0.042 9.908 -0.015

9.923 0.026 10.011 -0.088 9.984 -0.060

81 10.673 0.025 10.713 -0.040 10.683 -0.011

82 11.521 0.030 11.540 -0.019 11.509 0.012

83 12.417 0.028 12.421 -0.003 12.386 0.031

86 15.397 0.028 15.404 -0.007 15.362 0.035

87 16.530 0.025 16.522 0.008 16.477 0.053

89 18.878 0.028 18.962 -0.084 18.912 -0.034

91 21.681 0.026 21.695 -0.014 21.640 0.041

93 24.730 0.026 24.749 -0.019 24.689 0.041

94
26.379 0.030 26.405 -0.026 26.343 0.036

26.409 0.028 26.575 -0.167 26.513 -0.104

95 28.099 0.028 28.152 -0.053 28.088 0.011

99
36.152 0.026 36.138 0.014 36.065 0.087

36.107 0.028 36.359 -0.253 36.286 -0.179

100
38.361 0.024 38.405 -0.043 38.330 0.031

38.394 0.025 38.638 -0.243 38.563 -0.168

130 187.827 0.026 187.646 0.181 187.675 0.153

131 196.713 0.027 196.536 0.177 196.578 0.135

132
205.968 0.027 205.774 0.194 205.831 0.137

205.983 0.037 206.717 -0.735 206.776 -0.793

133 215.732 0.070 215.371 0.361 215.443 0.288

νD 0.874 ± 0.035 1.067 ± 0.070

τ [ns] 5.201 ± 0.004 5.224 ± 0.008

K [GHz] 0.029 ± 0.038

RMSE [GHz] 0.188 0.180
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Table A.2: Binding energies of 86Sr on the 5s2 1S0 + 5s5p 1P1 potential.

ν Eobs [GHz] σE [GHz]
Fit to Eq. 3.2 Fit to Eq. 3.4

E1(ν) [GHz] δ1 [GHz] E2(ν) [GHz] δ2 [GHz]

77 7.828 0.024 7.749 0.078 7.827 0.001

78 8.457 0.022 8.374 0.083 8.449 0.008

82 11.305 0.027 11.313 -0.008 11.375 -0.070

83 12.210 0.023 12.168 0.042 12.227 -0.017

88 17.352 0.023 17.298 0.054 17.340 0.012

89 18.545 0.022 18.514 0.031 18.552 -0.007

94 25.725 0.023 25.717 0.008 25.736 -0.011

95 27.422 0.023 27.406 0.016 27.422 0.000

100 37.318 0.028 37.305 0.013 37.302 0.016

105 50.041 0.027 50.018 0.023 49.998 0.043

109 62.584 0.026 62.622 -0.037 62.590 -0.006

113 77.736 0.024 77.767 -0.031 77.726 0.009

118 100.831 0.033 100.878 -0.047 100.833 -0.002

122 123.262 0.025 123.254 0.008 123.212 0.049

127 156.958 0.030 156.899 0.059 156.874 0.085

128 164.456 0.024 164.471 -0.015 164.450 0.006

131 189.009 0.028 189.036 -0.027 189.034 -0.026

134 216.541 0.025 216.585 -0.043 216.611 -0.069

136 236.795 0.029 236.748 0.047 236.796 -0.001

νD 0.187 ± 0.036 0.398 ± 0.071

τ [ns] 5.201 ± 0.004 5.224 ± 0.008

K [GHz] 0.136 ± 0.045

RMSE [GHz] 0.042 0.035
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Table A.3: Binding energies of 87Sr on the 5s2 1S0 + 5s5p 1P1 potential.

ν Eobs [GHz] σE [GHz]
Fit to Eq. 3.2 Fit to Eq. 3.4

E1(ν) [GHz] δ1 [GHz] E2(ν) [GHz] δ2 [GHz]

76 6.667 0.113 6.564 0.104 6.622 0.045

77 7.227 0.031 7.106 0.122 7.161 0.066

78 7.793 0.032 7.684 0.109 7.736 0.057

79
8.370 0.029 8.301 0.069 8.350 0.020

8.374 0.035 8.365 0.009 8.414 -0.040

80
9.001 0.029 8.960 0.042 9.005 -0.004

9.106 0.026 9.028 0.078 9.073 0.033

81 9.692 0.027 9.661 0.032 9.703 -0.010

82
10.412 0.150 10.407 0.005 10.445 -0.034

10.454 0.027 10.484 -0.030 10.522 -0.068

83 11.256 0.028 11.200 0.056 11.235 0.021

84
12.073 0.038 12.044 0.029 12.075 -0.002

12.108 0.031 12.131 -0.022 12.162 -0.053

85 12.993 0.028 12.939 0.054 12.967 0.027

86 13.945 0.048 13.890 0.056 13.913 0.032

87 14.950 0.033 14.897 0.053 14.917 0.033

88
15.982 0.035 15.966 0.017 15.981 0.001

16.061 0.028 16.076 -0.014 16.091 -0.030

93 22.322 0.029 22.313 0.010 22.307 0.015

95 25.355 0.030 25.380 -0.025 25.366 -0.011

99 32.565 0.046 32.578 -0.012 32.545 0.020

100 34.552 0.041 34.620 -0.068 34.584 -0.032

105 46.428 0.036 46.508 -0.080 46.449 -0.021

108 55.053 0.035 55.148 -0.095 55.076 -0.023

109 58.204 0.030 58.309 -0.105 58.233 -0.029

110 61.488 0.057 61.619 -0.131 61.539 -0.051

142 288.180 0.026 288.176 0.004 288.170 0.010

143 300.670 0.030 300.645 0.025 300.653 0.017

144 313.570 0.034 313.560 0.010 313.584 -0.014

νD 0.850 ± 0.039 1.070 ± 0.075

τ [ns] 5.201 ± 0.004 5.224 ± 0.008

K [GHz] 0.115 ± 0.041

RMSE [GHz] 0.063 0.033
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Table A.4: Binding energies of 88Sr on the 5s2 1S0 + 5s5p 1P1 potential.

ν Eobs [GHz] σE [GHz]
Fit to Eq. 3.2 Fit to Eq. 3.4

E1(ν) [GHz] δ1 [GHz] E2(ν) [GHz] δ2 [GHz]

65 2.581 0.004 2.537 0.044 2.580 0.001

66 2.823 0.006 2.783 0.040 2.824 -0.001

67 3.076 0.004 3.047 0.029 3.087 -0.011

68 3.371 0.004 3.333 0.038 3.371 0.001

69 3.682 0.004 3.640 0.042 3.676 0.006

71 4.357 0.006 4.326 0.031 4.359 -0.001

89 16.944 0.004 16.927 0.016 16.916 0.028

90 18.083 0.005 18.108 -0.025 18.094 -0.011

92 20.633 0.004 20.675 -0.041 20.656 -0.022

νD 0.493 ± 0.026 0.693 ± 0.051

τ [ns] 5.201 ± 0.004 5.224 ± 0.008

K [GHz] 0.067 ± 0.010

RMSE [GHz] 0.035 0.013
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We demonstrate photoassociation (PA) of ultracold fermionic 87Sr atoms. The binding energies of a series
of molecular states on the 1!+

u 5s2 1S0 +5s5p 1P1 molecular potential are fit with the semiclassical LeRoy-
Bernstein model, and PA resonance strengths are compared to predictions based on the known 1S0 + 1S0

ground-state potential. Similar measurements and analysis were performed for the bosonic isotopes 84Sr and
86Sr, allowing a combined analysis of the long-range portion of the excited-state potential and determination
of the 5s5p 1P1 atomic state lifetime of 5.20 ± 0.02 ns. The results enable prediction of PA rates across a wide
range of experimental conditions.

DOI: 10.1103/PhysRevA.103.023111

I. INTRODUCTION

Ultracold gases of the various isotopes of strontium are
currently studied for a wide range of applications, such as fre-
quency metrology [1–3], quantum simulation of many-body
physics [4,5], quantum information [6,7], Rydberg physics
[8,9], and cold collisions [10–13]. The fermionic isotope
(87Sr) in particular attracts significant attention because it
is used in optical atomic clocks [1,14] and the ground-state
tenfold degeneracy arising from the large nuclear spin (I =
9/2) introduces novel magnetic phenomena [4]. For many of
these experiments, ultracold samples are trapped in optical
lattices in order to prevent atom-atom interactions or introduce
spatial periodicity for quantum simulation of materials. Pho-
toassociative (PA) spectroscopy [15,16], which is the optical
formation of bound molecules from the initial state of two
colliding atoms, is a well-established and useful technique for
probing ultracold gases in optical lattices. It can be used to
detect double occupancy of lattice sites [17], which provides
a measurement of sample temperature and probe of quantum
phase transitions [18]. This technique has not been utilized
for 87Sr, however, and no study on PA in this isotope has
been published. PA formation of molecules bound in the
5s2 1S0 +5s5p 3P1 molecular potential in 87Sr was mentioned
in Ref. [19], and this is more challenging than in bosonic iso-
topes [20–22] because of the large nuclear spin and hyperfine
splitting of the molecular states.

Here, we report photoassociation in 87Sr to states on the
1!+

u 5s2 1S0 +5s5p 1P1 molecular potential, to the red of the
principal transition at λ = 460.85 nm. Hyperfine splitting in
the excited state is small (≈60 MHz) and unresolved, produc-
ing a simple spectrum. We report line strengths in terms of
PA collision-event rate constants for transitions across a wide
range of binding energies and provide parameters for a fit
of the binding energies to the semiclassical Leroy-Bernstein

*killian@rice.edu

formula [23]. This can inform design of experiments using
PA spectroscopy as a probe of 87Sr in optical lattices. We
also report Leroy-Bernstein parameters describing molecular
binding energies for 84Sr and 86Sr. The extracted value of the
C3 coefficient and associated 1P1 atomic lifetime are compared
with previous results from PA spectroscopy of 88Sr [24,25]
and 86Sr [26] and measurements of AC Stark shifts [7]. PA
collision-event rate constants are compared to predictions [27]
based on the known 1!+

g 5s2 1S0 +5s2 1S0 potential [10,28].

II. EXPERIMENTAL METHODS

Using methods described in Ref. [29], ultracold strontium
atoms are trapped in an optical dipole trap (1064-nm wave-
length) consisting of two crossed elliptical beams propagating
perpendicular to gravity with tight axis along gravity. Atoms
are initially loaded into the trap and then a short stage of
evaporation produces the sample used for PA spectroscopy.
For 87Sr, spectroscopy is performed in a trap with oscillation
frequencies ( fx, fy, fz) = (68,85,433) Hz. At the start of PA
laser exposure,the number of atoms is N = 2.3 × 106, the
temperature is T = 1.8 µK, and the peak density is n0 =
2.1 × 1013 cm−3. The sample has approximately equal pop-
ulation of the 10 nuclear spin states [30]. For 84Sr, these
parameters are ( fx, fy, fz) = (81,30,406) Hz, N = 4.5 × 106,
T = 1.9 µK, and n0 = 1.7 × 1013 cm−3. For 86Sr, these pa-
rameters are ( fx, fy, fz) = (61,76,388) Hz, N = 1.2 × 106,
T = 1.8 µK, and n0 = 1.1 × 1013 cm−3. The PA laser inten-
sity (3.6–237 mW/cm2) and exposure time (10–1000 ms) are
varied depending upon the sample and strength of the PA
transition. Typical peak atom loss due to PA is 10–50%. The
sample temperature varies by no more than 25% for measure-
ments of the PA rate constant. The PA laser beam has e−2 radii
of whorz = 850 µm and wvert = 440 µm on the atoms, and it
is treated as homogeneous over the sample.

After exposure, the PA laser and the dipole trap are ex-
tinguished, and the atom number and sample temperature are
measured with resonant time-of-flight absorption imaging on

2469-9926/2021/103(2)/023111(5) 023111-1 ©2021 American Physical Society
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FIG. 1. Representative atom-loss spectra for excitation to molecular states on the 1!+
u 5s2 1S0 +5s5p 1P1 molecular potential in 87Sr.

Background atom number is normalized to one. PA laser exposure times and intensities are adjusted to give comparable atom loss for all
spectra, so line intensity does not reflect the PA collision-event rate constant. Exposure times and intensities vary from 75 to 200 ms and from
3.6 to 11.5 mW/cm2 respectively. Inset is a representative fit to a Lorentzian.

the 461-nm transition. Photoassociation is indicated by atom
loss. Figure 1 shows representative atom-loss spectra for 87Sr.
The PA laser is locked to a wavemeter (Moglabs FZW600)
that is calibrated against the atomic 5s2 1S0 → 5s5p 1P1 tran-
sition, with a frequency accuracy of ≈ ±30 MHz.

III. BINDING ENERGIES AND EXCITED-STATE
MOLECULAR POTENTIAL

The PA resonances, labeled by vibrational index ν, are
fit to a Lorentzian line shape. Typical linewidths range be-
tween 60 and 150 MHz. This is consistent with the lower limit
given by twice the atomic linewidth γatomic = 30.24 MHz [25].
The dominant source of additional line broadening is laser
frequency jitter. Binding energies (defined as Eν > 0) are
determined by taking the difference between PA resonance
positions and the wave number corresponding to excitation of
the 5s2 1S0 → 5s5p 1P1 atomic resonance.

The long-range form of the excited-state 1!+
u

1S0 + 1P1
molecular potential can be approximated as

Ve(r) = D − C3

r3
+ h̄2[J (J + 1) + 2]

2µ r2
, C3 = 3h̄λ3

16π3τ
, (1)

where D is the dissociation energy, µ is the reduced mass,
r is the internuclear separation, and τ = 1/(2πγatomic) is the
lifetime of the 1P1 atomic state. Because of the ultracold
temperature, only s-wave collisions occur and only J = 1
molecular rotational states are excited. The rotational energy
is small and can be neglected, as can thermal energy of the
initial collisional state. The binding energies, Eν , can be fitted
to the semiclassical Leroy-Bernstein formula [23]:

Eν = [(ν − νD)H3]6, H3 = 1

C
1
3

3

h̄'
( 4

3

)

2'
( 5

6

)

√
2π

µ
, (2)

where ν = 1 corresponds to the least-bound state, ' is the
gamma function, and νD is a fit parameter ranging from 0 to
1 that takes on a different value for each isotope. We perform
a combined fit of all data to Eq. (2) using a common value of
C3 as a fit parameter and independent values of νD for each
isotope. The quantum numbers ν assigned to each level are
shifted to obtain 0 < νD < 1.

Figure 2 shows binding energies for 87Sr and residuals
for all isotopes. Table I shows the fit parameters, including
the value of τ extracted from the C3 coefficient. The sta-
tistical uncertainty in τ from this procedure is very small,
but the fit residuals for all three isotopes show a systematic
trend corresponding to ≈100 MHz variation over a change

FIG. 2. Fit of the binding energies of states on the
1!+

u 5s2 1S0 +5s5p 1P1 molecular potential for various strontium
isotopes. Plots (a)–(c) show the difference (δ) between observed
and fit values for the binding energies for 84Sr, 86Sr, and 87Sr
respectively, using parameters from Table I. Plot (d) shows the
measured binding energies as a function of vibrational quantum
number, ν, for 87Sr. The dashed line is the best fit of the data to
Eq. (2).

023111-2

33



PHOTOASSOCIATIVE SPECTROSCOPY OF 87Sr PHYSICAL REVIEW A 103, 023111 (2021)

TABLE I. Parameters from a fit of binding energy for 84Sr, 86Sr,
and 87Sr to Eq. (2).

Isotope 87Sr 86Sr 84Sr

νD 0.87 ± 0.02 0.20 ± 0.02 0.87 ± 0.02
τ (ns) 5.20 ± 0.02

of ≈100 GHz in binding energy. This trend might indicate
systematic wavemeter error, variation in molecular-state AC
Stark shifts from the optical dipole trap laser fields, or the
influence of additional terms in the molecular potential not
accounted for by the Leroy-Bernstein formula [31]. Adding an
additional fit parameter in the form of a binding energy offset
removes the systematic trends in the residuals and increases
τ by 0.02 ns or 0.4%, which we take as our uncertainty. We
thus quote a final value of τ = 5.20 ± 0.02 ns. The value
of τ determined here differs by 1% from the most accurate
reported measurement of τ = 5.263 ± 0.004 ns, performed
with photoassociation in an optical lattice [25], and is in closer
agreement with a more recent value of τ = 5.234 ± 0.008 ns
determined from AC Stark shifts of Sr levels [7]. The binding
energies for all observed transitions are included in the Sup-
plemental Material [32].

IV. PHOTOASSOCIATIVE LOSS

The loss of atoms due to photoassociation is described by
a local equation for the evolution of the atomic density

ṅ = −β(I, f )n2 − $1n, (3)

where $1 describes one-body loss due to light scattering on
the atomic transition or background gas collisions, and the
two-body loss is described by β, which depends on PA laser
intensity, I , and frequency, f . Assuming constant sample tem-
perature, the number of atoms in the trap as a function of the
PA exposure time t is given by

N (t ) = N0e−$1t

1 + n0β

2
√

2$1
(1 − e−$1t )

, (4)

where N0 is the number at the beginning of the PA interaction
time and n0 is the initial density. The density can be calculated
from the number and sample temperature, approximating the
trap as an infinitely deep harmonic potential with oscillation
frequencies matching the measured frequencies of the optical
trap. Equation (3) has been integrated over volume to yield the
evolution of sample number, which is solved by Eq. (4).

Near resonance with the transition to a molecular state with
vibration quantum number ν and center frequency fν , the PA
loss is described with a Lorentzian line shape [26],

β = 2Kνγmol

γ

1
1 + 4( f − fν )2/γ 2

, (5)

where γmol = 2γatomic is the natural linewidth of the PA transi-
tion due to radiative decay of the molecular state and γ is the
observed linewidth of the transition. Kν , which is proportional
to laser intensity I , is the resonant collision-event rate constant
that would be observed in the absence of any broadening
beyond the natural linewidth. Thermal broadening is much

FIG. 3. Atom-loss spectra for PA to the ν = 105 state of the
1&+

u 5s2 1S0 +5s5p 1P1 molecular potential for 86Sr. PA laser ex-
posure time is indicated in the legend. A combined fit of all data
to Eqs. (4) and (5) determines the the peak PA collision-event rate
constant Kν . The PA laser intensity is 3.6 mW/cm2 and the ini-
tial density is n0 = 1.3 × 1013 cm−3. The fit result is Kν/I = 2.8 ×
1013 cm5/(s mW).

smaller than γmol and the laser intensity is low enough that
saturation effects are negligible.

Figure 3 shows a fit of typical atom-loss spectra to Eqs. (4)
and (5) for different PA laser exposure times for 86Sr. All fit
parameters are well determined, but systematic uncertainty in
laser intensity, atom density, and sample temperature lead to
systematic uncertainty of about a factor of 3 in the fundamen-
tal quantity for comparison with theory, Kν/I .

Kν/I is proportional to F ν
eg(E ,'ν ), the free-bound Franck-

Condon factor for excitation to the excited state ν from the
ground 1&+

g 5s2 1S0 +5s2 1S0 potential, where E is the initial
collision energy and 'ν < 0 is the detuning from atomic
resonance. Through the relation

h'ν = Ve
(
rν

C

)
− D − Vg

(
rν

C

)
, (6)

the detuning defines the Condon radius, rν
C , which is the

internuclear separation at which the photon energy (via the
Plank constant h), is resonant with the difference in molecular
potentials. rν

C can be interpreted as the classical separation at
which excitation occurs. At long range and ultracold temper-
atures, the ground potential can be approximated by Vg(r) =
−C6/r6 − C8/r8 − C10/r10.

Using the reflection approximation [27], the Franck-
Condon factor can be related to the energy-normalized
ground-state wave function at the Condon point, (g(rν

C, E )
through

F ν
eg(E ,'ν ) = ∂Eν

∂ν

1
dc

∣∣(g
(
rν

C, E
)∣∣2

(7)

where ∂Eν/∂ν is the spacing between adjacent vibrational
levels in the excited state at level ν, which can be found from

023111-3

34



J. C. HILL et al. PHYSICAL REVIEW A 103, 023111 (2021)

FIG. 4. Intensity-normalized resonant collision-event rate con-
stant (Kν) for strontium PA transitions. Solid lines are predictions
based on Franck-Condon factors derived from numerically calculated
ground-state wave functions [Eq. (7)] as described in the text.

Eq. (2). Also,

dc =
∣∣∣∣

d
dr

[Ve(r) − Vg(r)]
∣∣∣∣
r=rν

C

(8)

is the difference in slopes of the excited and ground potentials.

V. RATE-CONSTANT MEASUREMENTS

We calculate ground-state wave functions for a collision
energy of 2 µK by numerically integrating the Schrödinger
equation [33]. We use the full ground-state potential from
Ref. [28] in the form from Ref. [34] with recommended values
of C6 = 1.525 × 107 cm−1 Å6, C8 = 5.159 × 108 cm−1 Å8,
and C10 = 1.91 × 1010 cm−1 Å10. Figure 4 shows the mea-
sured values of Kν/I and theoretically expected values based
on the calculated wave functions. A common scaling fac-
tor is applied to theoretical predictions to account for the
proportionality between Kν/I and the Franck-Condon factors.
Predicted rates for 87Sr are further reduced with respect to the
bosons by the ratio of the pair correlation functions g(2)

f /g(2)
b ,

where g(2)
b = 2 reflects bunching for bosons and g(2)

f = 0.9
reflects Pauli exclusion for a gas of identical fermions in ten
equally populated internal states [30]. Measurements for 86Sr
agree within a factor of 2 with previously reported values [26],
which is reasonable given systematic uncertainties.

The rate coefficients go to zero when the Condon radius
for the transition is near a node of the ground-state wave
function (Fig. 4). For 87Sr and 84Sr, the node interrogated
by measurements reported here corresponds to internuclear
spacing equal to the s-wave scattering lengths, a84 = 123 a0 or

a87 = 96 a0 [10], where a0 is the Bohr radius. For 86Sr, a86 =
823 a0 is a larger length scale than probed here, and the node
corresponding to " = −500 GHz is the second preasymptotic
node [26].

VI. PHOTOASSOCIATION IN AN OPTICAL LATTICE

For 87Sr and 84Sr, the two isotopes most often used for
quantum-gas research [1,2,4,5,9], the PA rate constants are
relatively small at convenient detunings for experiments. A
useful figure of merit is the ratio of the number-loss rate for PA
of two atoms in a single lattice site (ṄPA) to the off-resonant,
single-atom, photon-scattering rate (R ≈ 2πs0γ

3
atomic/"

2).
The ratio of laser intensity to the atomic transition’s saturation
intensity (Isat = 40 mW/cm2) is indicated by s0.

For two 87Sr atoms in a single site of an optical lattice,
each of mass m, ṄPA ≈ 2Kν

∫
d3r n2(r) = 2Kν/(2πa2

HO)3/2,
where we have assumed the atoms are both in the ground
state of a single site in a deep optical lattice in different
internal spin states [35]. aHO =

√
h̄/mω is the harmonic os-

cillator length for ω =
√

4V0ER/h̄ and lattice depth V0. ER =
2π2h̄2/(mλ2

lat ) is the recoil energy for lattice laser wavelength
λlat. For λlat = 1064 nm and V0 = 16ER, 1/(2πa2

HO)3/2 =
1 × 1014 cm−3. For PA at small detuning (" = −10 GHz),
ṄPA ≈ 3 × R. For detuning beyond the wave-function node
(" = −300 GHz), ṄPA ≈ 13 × R, which is more favorable.
At " = −300 GHz, a PA laser intensity of 20Isat yields
ṄPA ≈ 10/s.

VII. CONCLUSION

In summary, we have measured and characterized photoas-
sociation resonances up to ≈314 GHz red detuned from the
atomic asymptote of the 1'+

u 5s2 1S0 +5s5p 1P1 molecular
potential in fermionic 87Sr. Similar measurements were made
in bosonic 86Sr and 84Sr, and a combined fit to the semiclas-
sical LeRoy-Bernstein model allowed determination of the
1P1 atomic state lifetime and other spectroscopic parameters.
Resonance intensities were compared with predictions from a
reflection approximation and the ground-state wave function
calculated with the best available ground-state potential. We
find that, to within experimental uncertainties, the resonance
frequencies and intensities are reasonably well described by
theoretical predictions. This work will enable accurate pre-
diction of photoassociative transition frequencies and rates
for experiments with the strontium isotopes most commonly
used in quantum gas experiments, including experiments with
fermionic 87Sr.
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