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Abstract

In this work we describe the design and implementation of an optical system

that enables the study of the interactions of Rydberg atoms or other Rydberg

species in well-defined geometries. To understand and observe the dynamics

of Rydberg interactions, the ability to engineer different arrangements of mi-

croscopic cold atom traps and manipulate their positions with a precision of

a few microns is essential. This is accomplished by a custom designed high-

numerical-aperture long-working-distance objective lens and a spatial light

modulator device to control the phase of an incoming optical beam. Several

different trap geometries have been realized, with a spatial resolution of a

few microns, including a 1-dimensional chain, a 2-dimensional square grid,

and a circular array of traps. The objective lens has been designed to provide

diffraction limited performance at multiple wavelengths facilitating the cre-

ation of not only micron-scale atom traps but also the fluorescence imaging of

trapped atoms. The system enables precise control over trap positions, and

hence the locations at which atoms might be excited, with applications in, for

example, the study of long-range interactions between Rydberg atoms, the

creation of long-range Rydberg molecules, the implementation of qubits for

quantum computing based on Rydberg atoms, and in quantum simulation.
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Chapter 1

Introduction

1.1 Background and Motivation

An atom with at least one electron in a highly excited quantum state, gen-

erally with principal quantum number n > 30 is termed as a Rydberg atom.

The study of Rydberg atoms is an active area of research in ultracold atomic

physics and such species have been used in areas as diverse as quantum in-

formation [1], quantum computation [2], the formation of ultralong-range

Rydberg molecules [3] and the investigation of quantum critical behavior [4].

The fact that they have extremely long lifetimes and properties that can be

tuned over many orders of magnitude has made Rydberg atoms attractive as

a model system for studying quantum physics [5–7]. Rydberg atoms possess

exaggerated properties because the valence electron is far away from the in-

ner shell electrons as well as the core ion. For example, the polarizability of a
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Rydberg atom scales with n7 while the van der Waals force between Rydberg

atoms scales as n11. Due to these enhanced properties, Rydberg atoms are

particularly useful to study and simulate many-body interactions important

in condensed matter physics. The strength of their dipole-dipole interactions

can be manipulated by selecting specific (n, l) Rydberg states as well as by

controlling the spatial distance between two (or more) Rydberg atoms. For

example, to increase the interaction strength, a state with a larger quantum

number n can be excited. The energy levels and transitions important in

the present work are shown in the atomic energy level diagram for Strontium

(Sr) presented in Figure 1.1.

Rydberg atoms can be created at a precise point in space by using a highly

focused laser beam to create localized Optical Dipole Traps (ODTs) in which

ground-state atoms are tapped prior to their excitation. In this thesis, we

describe the design and implementation of an optical system that employs

a Spatial Light Modulator (SLM) that is capable of creating arbitrary ODT

configurations with the goal of controlling the interactions between two (or

more) Rydberg atoms at length scales of a few microns to tens of microns.

The theory behind generating the different trapping geometries will be de-

scribed together with the creation of tightly focused single ODTs, 1D and

2D arrays of traps and, finally a ring lattice of ODTs.

The creation of a single Rydberg atom in a trap will rely upon the Ryd-

berg blockade effect, which allows only one atom to be excited to a Rydberg

state within a certain volume. The region surrounding this Rydberg atom

6



Figure 1.1: A section of the Strontium energy level diagram showing the
relevant transitions to excite ground state atoms to Rydberg states using
various optical wavelengths. The energy level diagram shows two-photon as
well as three-photon excitations for various final Rydberg states. The main
fluorescence transition at 461nm is also shown. This transition, along with
the 689nm transition, is also used for cooling the atoms in the Magneto-
Optical Trap (MOT). [8]

is known as the blockade volume and can be understood as follows. In the

vicinity of a single Rydberg atom, other Rydberg atoms experience a strong

potential due to the dipole-dipole interaction which causes their energy levels

to shift. This shift in the energy levels depends on the quantum numbers

(n,l) of the Rydberg states as well as the spatial distance between the two

atoms. Thus, neighbouring atoms are no longer in resonance with the Ry-

dberg excitation light and are not excited to the Rydberg state whereupon

only a single Rydberg atom can be excited in a tightly localised ODT. For
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further details about the properties of Rydberg atoms, the interested reader

is referred to [9, 10].

Figure 1.2: The figure shows typical parameters for Rydbergs atom created
in a MOT. Strong interactions on the order of a few MHz are present over
interatomic distances of a few microns. [11]

The trapping and cooling of Sr utilizes powerful techniques that have been

developed over the last 30 years [12, 13]. First, a Sr oven operating around

700 K (425◦C ) is used to vaporize a sample of metallic Sr. It is followed by a

2D optical molasses to collimate and shape the atomic beam. The resulting

atomic beam is collected and cooled to mK temperatures by using a Zeeman

slower opening up to the 3D Magneto-Optical-Trap (MOT). The Zeeman

slower uses the (5s2) 1S0 - (5s5p) 1P 1 transition which is also called the blue

(461 nm) transition. The current setup employs two MOTs: i) Blue MOT

operating on the same broad linewidth 461 nm transition as mentioned above
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and ii) Red MOT operating on the narrow linewidth (5s2) 1S0 - (5s5p) 3P 1

transition which results in further lowering of the temperature to the µK

regime. This is also called the red (689 nm) transition. The peak density of

the atomic cloud at the end of the red MOT cooling stage is of the order of

1x1012cm−3.

As mentioned previously, the valence electron of an atom in a Rydberg

state is far away from the inner shell electrons as well as the positively charged

core. For a Rydberg atom, this large distance results in their high polariz-

ability. Thus, as expected, this results in a very large induced dipole moment

in an external electric field which makes Rydberg atoms extremely sensitive

to electric fields. This also enables us to probe long-ranged dipole-dipole and

van der Waals interactions between atoms. This sets the interaction energy

between neighbouring atoms in a MOT with mean interparticle distances of

about 5 µm to be of the order of a few MHz.

In this thesis, I begin by introducing some basic theoretical framework

by describing fluorescence imaging which is used to characterize local atom

clouds by the process of light scattering, optical dipole trapping which en-

ables us to localize a single or a bunch of atoms inside a small volume by

using highly focused light beams, and finally aberration theory which proves

to be extremely useful in designing a custom microscope objective to focus

the beam. The thesis is divided into two main parts. In chapter 2, I de-

scribe the design, construction and testing of an optical system to generate

extremely tight ODTs and manipulate their depth and position under com-
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puter control. In chapter 3, I talk about the design, construction and testing

of a multi-element lens system by using the commercial ray-tracing software

called OSLO Light. Finally, in chapter 4, the two projects are combined

to build the final optical system for high-resolution imaging as well as high

spatial resolution trapping of atoms in an ultracold atomic quantum gas.

1.2 Fluorescence Imaging

If a resonant (or nearly resonant) beam of light interacts with an atom, it

can absorb photons from the light field and re-emit them via spontaneous

emission with a decay constant characteristic of the particular transition.

This scattering process between atoms and photons is called fluorescence

and collecting this light using an objective lens and subsequently imaging

onto a detector, constitutes fluorescence imaging. The resolution of the op-

tical system is directly set by the Numerical Aperture (NA) of the objective

which sets the light gathering ability of the imaging setup. The technique

of fluorescence imaging is routinely used in ultracold atom experiments to

measure the time of flight expansion of a cloud of gaseous atoms, to detect

single ions in Paul traps [14], and single atoms in a dipole trap [15].

A major focus of this work was to develop a custom high resolution imag-

ing system by considering the geometrical limitations of the vacuum cham-

ber used in our experimental apparatus. Recent work in the laboratory has

focused on creating Strontium Rydberg atoms and understanding the forma-
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tion of long-range Rydberg molecules in an ultracold quantum gas. Rydberg

atoms are highly suited to study long-range interactions since the van der

Waals force between them is orders of magnitude stronger than between

two ground-state atoms. This is particularly useful to study correlations

in many-body systems. For example, high-resolution fluorescence imaging

of 87Rb Rydberg atoms has been used to directly study the strong correla-

tions in a 2D Mott insulator where spatially ordered excitation patterns of

well-defined geometry were observed [16].

The energy level diagram for Sr highlighting the states relevant to the

present work is given in Figure 1.1. The (5s2) 1S0 - (5s5p) 1P 1 transition at

λ = 461 nm is commonly used for fluorescence imaging and has a linewidth

(FWHM) of 30.5 MHz. This transition is also used to create the standard

six-beam "blue" MOT. The same high resolution imaging system can also be

used to control the trapping potential on a microscopic scale (on the order

of a wavelength of light) [17] by generating a tightly focused Gaussian beam

in the center of the MOT or to create arbitrary trapping geometries as we

shall explore in the next chapter.

1.3 Optical Dipole Trapping

There are two types of optical forces that can act on a single atom or an

ensemble of atoms: the radiative force and the dipole force. The radiative

force, which relies on the resonant or near-resonant interaction of an atom
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with the light field, serves as one of the essential components of the well

known Magneto-Optical Trap (MOT) which has been used to confine a vari-

ety of atoms at mK and sub-mK temperatures [18, 19]. The dipole force on

the other hand relies on the electric dipole interaction which causes a light

shift in the atomic energy levels. We shall consider the far off resonant opti-

cal dipole trap at λ = 532nm as used here which is far red detuned from the
1P 1 transition thereby ensuring that the probability of optical excitation is

extremely low resulting in a low scattering rate. As shown below, the dipole

force produced due to the spatial variation of the intensity of the light field

results in a conservative potential.

An oscillating electric field of a monochromatic laser induces an oscillating

atomic dipole moment in an atom that is proportional to the field strength

p = α(w)E (1.1)

where α is the complex polarizability and is a function of the optical fre-

quency, w. The potential energy of an induced dipole in an electric field is

given by

Udip = −1
2〈p ·E〉 = Re(α)E2 (1.2)

where the angular brackets represent the time average. Note that the in-

tensity of the light field is defined as I = 2ε0cE2. Thus the potential is

proportional to the intensity of the light field. If we consider a two-level

system, with energy splitting ~w0, the sign of the detuning, ∆ = w−w0, de-
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termines the sign of the polarizability. If ∆ < 0, the dipole potential for the

ground-state atom is negative thus the dipole force, given by Equation (1.3),

acts towards regions of high intensity. In other words, ground-state atoms

are attracted towards the peak value of laser intensity. This is called a red

detuned optical dipole trap (ODT).

F = −∇Udip (1.3)

In contrast, if ∆ > 0, we are above resonance and the potential is positive

everywhere whereupon atoms are then trapped in regions of lowest intensity.

Laguerre-Gaussian beam modes [20, 21] are doughnut shaped beams with a

node in the center, which, for blue-detuned light, have been demonstrated to

trap 87Rb atoms in their central dark region [22, 23]. This is advantageous

because it results in a negligible scattering rate.

Since the dipole potential is proportional to the intensity of the light field,

the shape of the potential seen by the atoms will correspond to the intensity

profile of the laser. One of the major themes of this work is to shape the

intensity distribution of a light beam, using the techniques of beam-shaping,

to tailor the trapping potentials seen by the atoms.

The intensity distribution of a Gaussian beam of total power P, can be

described mathematically as

I(r, z) = 2P
πw2(z)e

−2 r2
w2(z) (1.4)
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where w(z) = w0

√
1 +

(
z
zr

)2
is the 1

e2 radius of the beam in the transverse

plane, zr is the Rayleigh range and w0 is the minimum radius located at the

waist. The trap depth is proportional to the peak intensity, U(r = 0, z =

0) ∝ I(r = 0, z = 0). An ODT created by a focused Gaussian beam provides

tighter confinement in the radial direction as compared to the axial direction

simply because of the intensity gradient is shallower along the direction of

the beam, see Equation (1.4).

Figure 1.3: A Gaussian beam propagating along the z axis. The red line in
the figure delineates the 1

e2 diameter along the beam propagation axis. The
transverse (x, y) beam intensity profiles are shown, as a function of the radial
coordinate, at three different slices. The intensity and the trapping potential
are largest at the waist (z = 0, r = 0).

For a two-level atom, with an excited-state decay rate Γ and energy split-

ting ~w0, the complex polarizability α is given in the classical Lorentz spring

14



model as

α = 6πε0c3 Γ/w2
0

w2
0 − w2 − i(w3/w2

0)Γ (1.5)

Substituting into Equation (1.2), we get

U(r, z) = Re(α)
2ε0c

2P
πw2(z)e

−2 r2
w2(z) (1.6)

For a red detuned ODT using a λ = 532nm beam with w = 2πc
λ
, w0 =

(2π) 6.5 x 1014 Hz and Γ = (2π) 30.5 x 106 s−1, the resulting trapping potential

is shown in Figure 1.4.

1.4 Aberrations

Snell’s Law, n sin(θ) = n′ sin(θ′), relates the angle of incidence and the angle

of reflection for a beam of light incident at the interface between two media.

This relation is clearly non-linear but using the Taylor expansion, it can be

linearized by writing sin(θ) as

sin(θ) = θ − θ3

3! + θ5

5! + ... (1.7)

The paraxial approximation results when all the terms except for the

first power in θ are discarded. Under this approximation, we can describe

the theory of perfect image formation where all the rays from an object point

converge to a single image point. We will explore this in chapter 3 where

we describe the performance of a custom designed imaging lens under the

15



Figure 1.4: The potential as a function of the axial coordinate (top) and
radial coordinate (bottom). The 1/e2 radius of the ODT is w0 = 2.5µm
and the total power in the beam is 10mW . The effect of gravity for 87Sr is
also included in the axial variation of the potential which causes the overall
gradient in the curve (top). The trap depth is a little over 150µK.
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paraxial approximation. It is worth remembering that most of the results of

geometrical optics which we are familiar with are only valid in the paraxial

approximation which is sometimes called the small-angle approximation. If,

instead, we keep terms up to the 3rd order in θ, we are in the regime of Seidel

aberrations1 and if we keep terms upto the 5th order, we are dealing with 5th

order theory of aberrations. Thus aberration theory simply expands upon

the study of the errors introduced due to the paraxial approximation. The

basic types of aberrations, shown in Figure 1.5, can be summarized as:

• Tilt: This is a 1st order aberration and is caused due to a tilt between

the actual wavefront and the reference wavefront. It can easily be

corrected by changing the tilt angle of an optical system relative to the

input ray fan.

• Defocus: This is also a 1st order aberration and is caused by selecting

an incorrect image plane thus blurring the image.

• Astigmatism: This is a 3rd order aberration. A cylinderical defor-

mation of the wavefront which would result in two line foci along two

perpendicular planes.

• Comatic Aberration: This is a 3rd order aberration. Causes a comet-

like shape of an off-axis object point thus causing an asymmetry in the

image. In other words, it causes a variation in the magnification in the

transverse plane. It doesn’t exist for on-axis object points.
1Also called 3rd order aberrations
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• Spherical Aberration: This is a 3rd order aberration. Causes the

optimal focal plane to deviate from the paraxial image plane. It in-

creases with the height of the ray striking the lens and is the only

aberration which exists for on-axis object points. It is responsible for

the rotationally symmetric blurring of the image point.

• Field Curvature and Distortion: These two are 3rd order aber-

rations. Both of these aberrations are only for off-axis object points.

These do not effect the shape of the wavefront, which remains spher-

ical, but instead are affected by the field position. They are relevant

only for widely extended images with respect to the focal length, thus

their effect will be minimal for our experimental purposes.

18



Figure 1.5: Visualizing the aberrations and showing the imperfections caused
in the image of a single point like object. The effect of varying the peak-to-
valley strength of the wavefront error on the resulting image profile is shown
as well. [24]
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Chapter 2

Optical Trapping System

2.1 The wave nature of light

Light can be described both classically and quantum mechanically and, de-

pending on the application, one approach might be more useful than the

other. For beam shaping applications, the wave theory of light is universally

used, which under the scalar approximation assumes that the electric field of

a monochromatic beam of light takes the form

u(r, t) = A(x, y) cos(2πvt− kz + φ(x, y, t)) (2.1)

where u(r, t) is the scalar electric field, at the position vector r, of a plane

wave travelling in the ẑ direction, v is the frequency of the optical field, k = 2π
λ

is the wavenumber and φ(x, y, t) is the phase of the beam. For this discussion,
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we shall consider beams with fixed phase in time, hence φ(x, y, t) = φ(x, y).

Furthermore, for monochromatic time-harmonic electric fields, we can ignore

the periodic time dependence1 and use a more mathematically convenient

notation of a complex scalar field

U(r) = A(x, y)ej(φ(x,y)−kz) (2.2)

where U(r) is called the electric field phasor. Usually, we deal with the

electric field in the transverse plane of propagation, thus it can be written

as U(x, y) at a constant value of z. Wave propagation originates from the

Huygen-Fresnel principle, which states that each point of the illuminated

input aperture acts as a secondary source of spherical wavelets, which can

be summed to compute the electric field at a subsequent image plane. The

Huygens-Fresnel integral is not ideal for computational purposes hence it is

common to make the near field approximation which leads to the Fresnal

Diffraction integral [25].

U ′(x, y) = ejkz

jλz
ej

k
2z (x2+y2)

∞̈

−∞

[
U(ξ, η)ej k2z (ξ2+η2)

]
e−j

2π
λz

(xξ+yη)dξdη (2.3)

which can be easily identified (apart from the multiplicative factors) as the

2D Fourier Transform (F .T .) of the expression in the square brackets with

the frequency variables fx = x
λz

and fy = y
λz
. (ξ, η) are the coordinates of the

1The time dependence, ej2πvt, is implicit.
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initial plane (located at z = 0) while (x, y) are the coordinates of the final

plane located at a distance z. Hence, by multiplying the field by a quadratic

phase factor, and then Fourier Transforming it, we can compute the field at

any subsequent plane. It is most useful to view the the wave propagation

phenomenon using the systems approach whereby we express Equation (2.3)

as a convolution instead of a 2D Fourier Transform. After rearranging the

terms inside the integrals, we arrive at the following equation

U ′(x, y) =
∞̈

−∞

U(ξ, η)h(x− ξ, y − η)dξdη (2.4)

where the convolution kernel is

h(x, y) = ejkz

jλz
e
jk
2z (x2+y2)

A single thin lens can be thought of as a spatially dependent phase trans-

formation since light passing through it experiences variable phase delay.

The effect of the lens, therefore, is to introduce a time delay proportional to

the thickness of the glass at the coordinates (ξ, η). The phase profile of a

thin lens is dervied in many standard textbooks on fourier optics and under

the paraxial approximation, it takes the form of a quadratic function

φf (ξ, η) = e−j
k

2f (ξ2+η2) (2.5)

where f is the focal length of the lens and can be positive or negative de-
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pending on the type of lens. Using the equations above we can understand

Figure 2.1: Shows how the optical fields are related at the input and the
output plane of the lens. The field at the back focal plane of the lens can be
computed using Equation (2.3).

how a beam of light will interact with a thin lens. If we know the electric

field at the input plane of the lens, U(ξ, η), then the electric field behind the

lens, Ul(ξ, η), will be given by the product of the lens phase profile with the

input field

Ul(ξ, η) = U(ξ, η)φf (ξ, η) (2.6)

and by using Equation (2.3), we can find the electric field at any plane after

the lens. For example, at the back focal plane of the lens, Equation (2.3)

simplifies to

U ′(x, y) = ejkf

jλf
ej

k
2f (x2+y2)

∞̈

−∞

U(ξ, η)e−j
2π
λf

(xξ+yη)dξdη (2.7)

where the quadratic phase factor of the lens cancels out with the quadratic

phase factor inside the integral. Notice that in Equation (2.7), the integral

represents an exact Fourier Transform of the incoming optical field falling
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at the input plane of the lens. Thus, computing the field at the focal plane

becomes fast and easy. Additionally, notice that the integral above resembles

the Fraunhofer approximation [25] thus a single lens takes the Fraunhofer

plane (at ∞) and places it at its own focal plane (with a different scaling

factor). As mentioned before, the output spatial coordinates at the focal

plane are proportional to frequency variables of the Fourier Transform, fx =
x
λf
, fy = y

λf
. The intensity, which is usually of experimental interest, is given

by the absolute value squared of the electric field which means that any phase

factors can be conveniently ignored.

I ′(x, y) = 1
λ2f 2

∣∣∣∣∣∣∣
∞̈

−∞

U(ξ, η)e−j
2π
λf

(xξ+yη)dξdη

∣∣∣∣∣∣∣
2

(2.8)

For an optical system which respects cylinderical symmetry, we may re-

duce the computational complexity by using cylinderical coordinates (ρ, φ)

and recognizing that the optical field can be written as U(ρ), where ρ is the

radial coordinate. [26]

2.2 Spatial Light Modulation Technology

A beam of light can be either modulated temporally, whereby the frequency,

v(t), or phase, φ(t), of a light beam is modified as a function of time, or

spatially, which involves the time-independent manipulation of the ampli-

tude, A(x, y), or phase, φ(x, y), in the transverse plane of the propagating
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beam. Therefore there are two ways to spatially modulate a beam of light: i)

amplitude modulation or ii) phase modulation. Examples of optical compo-

nents which have been commonly used to spatially modulate a beam of light

are: diffractive optical elements (DOE), holographic plates, fixed amplitude

and phase masks, microlens arrays etc. These are all common optical tools

to spatially modulate the beam and have been used for various applications

such as to implement quantum shift registers [27], optical tweezer arrays [28]

and 2p-Calcium fluorescence imaging [29], to name a few, but they do not

allow full dynamic control of the imaging plane. We seek the ability to create

arbitrary intensity profiles corresponding to unique optical dipole potentials

which can be dynamically controlled in-situ. Two electronically controllable

devices which can be useful to achieve this are: i) Phase-only SLM and ii)

Amplitude SLM, both of which can be programmed using the concepts of

diffraction theory as described in Section 2.1.

The Digital Micro-mirror Device is an example of a binary amplitude

SLM which is used to control A(x, y) in a particular plane perpendicular to

the propagation direction. It has been successfully used by multiple research

groups recently [30–34] to trap ultracold atoms in arbitrary trapping poten-

tials as well as to selectively manipulate their quantum states. A typical

DMD consists of (∼ 1 million) tiny mirrors, each of which can be indepen-

dently turned ON or OFF using an electro-mechanical torsion hinge. Despite

of having an underlying mechanical structure, the DMD is surprisingly fast

(∼ kHz) which is a major advantage of using a DMD for trapping neutral
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atoms to implement fast gated-operations in quantum computing [31].

Figure 2.2: Structure of a single pixel of a phase-only SLM. The liquid crystal
molecules are places in a cell squished between two electrodes. An electric
field is applied across the liquid crystal layer that causes them to rotate
thus changing the refractive index in the extraordinary direction w.r.t the
ordinary direction. The electric field can be controlled pixel by pixel thus a
spatially varying change in Optical Path Difference (OPD) is observed which
manifests itself as a spatially varying phase φ(x, y). [35]

Additionally, it can show truly static images, without any flicker, certainly

one less thing to worry about. For example, the DMD has been used to

address single atoms in an optical lattice [36], where different lattice sites

were simultaneously addressed by inducing arbitrary light shifts in a 1D chain

of atoms. It is important to note that the DMD modulates the amplitude

on a pixel-by-pixel basis thus beam shaping of an incoming beam can be

achieved by turning certain pixels OFF while keeping others ON; this spatial

multiplexing of the light field can be used to create arbitrary beam profiles

by Fourier transforming the light field, using a lens for example. This process

inherently causes poor light utilization since optical power is wasted by the
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mirrors in the OFF state. In addition, since the DMD is a binary device, there

are limitations on the ability of the device for beam shaping and complex

beam profiles can’t be achieved [37, 38]. Futhermore, despite the fact that

the DMD has been recently used to correct for aberrations [39], complete

wavefront correction can not be achieved and additionally the process is based

on implementing a non-binary amplitude modulation profile which requires

spatially averaging a certain number of pixels thus reducing the effective

resolution of the DMD. All of these reasons were convincing enough for us to

not use the DMD for spatial light modulation and instead we decided to use

the phase-only SLM. For a more detailed analysis on the various use cases

where the DMD might be a more suitable device for modulating the input

beam, the reader is referred to [40].

A phase-only SLM, on the other hand, does not affect the amplitude of

the light field thus no loss of power exists2 which allows it to achieve much

higher light utilization efficiency, up to 97% [41]. In addition, the phase

SLM is not a binary device, ie, it can apply 256 levels of phase modulation

at each pixel, between [0, 2π), allowing us to spatially change the phase of

the light beam in the transverse plane. This provides the atomic physicist

with immense control to create complex phase profiles which can correspond

to some truly remarkable beam shapes [42]. Perhaps the biggest advantage

of the phase-SLM is its ability to effectively and reliably correct for aber-

ations in the system. This is important because the vacuum viewport, in
2Except for the losses due to diffraction which would be present in both devices.
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typical ultracold chambers, has been sealed tight using a metal flange which

exerts stress on the edges of the silica viewport causing it to distort the

wavefront non-uniformly across its aperture. This distortion of the wave-

front introduces non-trivial aberrations which eventually reduce the effective

resolution of the imaging and trapping system as we shall explore in the

next chapter. This can be easily countered by using a wavefront sensor to

measure the aberrated wavefront and then applying the inverse phase profile

onto the SLM display to cancel the effect of the external aberrations. This

technique has been used successfully to drastically improve the fidelity of the

trapping potentials to make extremely precise ODT shapes [43]. This was

successfully demonstrated by Browaeys’s group (Figure 2.16) where they use

a Shack-Hartmann wavefront sensor in a closed-loop configuration to feed-

back the instantaenous wavefront back to the SLM to correct for aberrations

introduced by the vacuum viewport and any residual phase errors due to

misalignments of the optical elements in the beam path. In particular, they

showed that the wavefront error is mostly contributed by the vacuum view-

port which was expected.

Equation (2.2) satisfies the scalar wave equation and thus serves as an

appropriate description of a light field since the frequency of a monochromatic

beam is usually known a priori. The SLM gives us the ability to control

φ(x, y), in a plane perpendicular to the propagation direction, with a spatial

resolution equal to the pixel pitch. In the next section I will combine this

fact with the Fresnel Diffraction integrals to create various standard 1D and
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2D trapping configurations.

We use the Hamamatsu X13138-04, a reflective type liquid-crystal-on-

silicon SLM which is electrically addressed and can modulate the wavefront

of an incoming light beam. As mentioned before, this SLM is a pixelated

device consisting of 1280 x 1024 pixels with a pixel pitch of 12.5 µm and a

maximum spatial resolution3 40 lp/mm. It has a rise time of 10 ms and a

fall time of 25ms and has a 96% fill factor [41].

2.3 1D and 2D trapping configurations

As was discussed in the previous sections, an SLM can apply a phase profile

onto the incoming electric field, such that the resulting complex amplitude

of the beam right after the SLM plane becomes

U(ξ, η) = A(ξ, η)ej(φ+φSLM ) (2.9)

where φ(ξ, η) is the original phase of the incoming beam and φSLM(ξ, η) is

the phase imprinted by the SLM. In general, the electric field of the incoming

beam is known. In our case, we select a collimated flat top gaussian beam

such that the amplitude and phase profiles are (approximately) flat. Hence,

we can approximate our input beam as an ideal plane wave. We developed a

custom beam propagation tool in MATLAB [Appendix A], based on Fourier

Diffraction Theory, to compute the electic field at an arbitrary plane after it
3Spatial resolution is defined in the next chapter.

29



passes through a set of standard optical components (lenses, gratings, prisms,

cylinderical lenses etc.) separated by arbitrary distances. The intensity,

which is what we measure experimentally, can be obtained by the absolute

value squared of the field but it is still important to compute the electric

field at every plane to find the field at any subsequent plane by the repeated

application of Equation (2.3). For a single propagation, when the phase

profile to be applied on the SLM is known a-priori, we can compute the

intensity profile in the imaging plane of a high resolution objective by simply

using Equation (2.8) with U(ξ, η) given by Equation (2.9), with f being

replaced by the fobjective. In what follows, I will use the concepts discussed

above to show how we can build various standard arrangements of ODTs

and control each trap depth individually by varying the power in a single

microtrap, all based on diffraction theory. Furthermore, note that the F .T .

is a linear operator hence the phase profiles can be added (modulo 2π) to

combine the effect of various phase profiles, for example, to translate a single

ODT in 3D space.

2.3.1 3D motion of an ODT

We create a single ODT by focusing a beam of light using a single spherical

singlet lens element as shown in Figure 2.3. By changing the wavefront of

the incoming beam, we can precisely move this trap around in 3D space since

the SLM gives us the ability to move the focus of a lens both, axially and

laterally.
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To move the trap axially along the longitudinal axis, we apply a quadratic

phase profile corresponding to a Fresnel lens, of focal length f . This is

equivalent to adding an extra lens between the beam-splitter (BS) and the

Fourier Lens, ffourier, in Figure 2.3 thus introducing an extra quadratic phase

in the beam which will cause it to focus at a different plane as compared to the

focal plane of Fourier Lens. The axial direction of the shift can be selected

by using a positive or a negative Fresnel lens. This is important to correct for

the chromatic aberration present in our custom designed objective lens. In

particular, we shifted the focal plane by roughly 1mm which corresponds to

the primary axial colour (PAC)4 w.r.t the imaging wavelength of λ = 461nm.

Similarly, to move the trap in the transverse plane, we can apply a linearly

increasing phase profile which is equivalent of passing the beam through a

small angle glass prism placed between the BS and the Fourier Lens. The

amount and direction of the lateral shift can be controlled by tuning the

magnitude and sign of the gradient of the ramp, respectively. Figure 2.4

shows the experimental as well as simulation results.

For mathematical concreteness, the phase profiles we used are given below

φprism(ξ, η) = k

ffourier
(∆x ξ + ∆y η)

φlens(ξ, η) = − k

2f∗
(ξ2 + η2)

(2.10)

where k = 2π
λ
, the wave vector of the light and 1

f∗
= 1

ffourier−∆f −
1

ffourier
. This

4The primary axial color is a type of chromatic aberration and is outlined in the next
chapter.
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(a) (b)

Figure 2.3: (a) The optical schematic to observe the far-field diffraction
pattern. The Fourier lens could equally well be a high resolution objective
lens. The BS configuration employed, ensures easier alignment of the optics
as compared to the small angle reflection convention. (b) The phase profiles
applied onto the SLM to achieve lateral and axial shifts. The phase profiles
are shown modulo(2π). The tests were performed using a collimated and
expanded beam of λ = 532nm.

will shift the focal plane backward by an amount ∆f which is what we desire

since λ = 461nm will focus closer to the lens as compared to λ = 532nm

because of the well known normal dispersion relation of decreasing refractive

index with λ.

The phase profiles shown in 1D and 2D are both modulo 2π since [0, 2π)

is the unique phase range and all other values are circularly wrapped onto

this range. Therefore the SLM only displays phase values within this range.5

Using a Fresnel lens profile, one can cause the spot to shift by a precise

amount along the propagation axis of the beam. The microscope objec-
5The actual range of phase that our SLM can apply varies with wavelength. For our

SLM, for λ = 532nm, the range of phase values [0, 2π) is linearly mapped onto [0, 211).
All phase profiles generated in MATLAB were scaled accordingly.
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(a) (b)

(c)
(d)

Figure 2.4: (a) A section of the phase profile of a prism in 1D with ∆x
set to 60µm in Equation (2.10). (b) The full phase profile extended to 2D
to produce a lateral shift purely along the x axis. (c) Simulation results
using beam propagation integrals in MATLAB. (d) Experimentally obtained
image of a single focused gaussian spot. The red spot marks the location
of the focus when no phase pattern is applied onto the SLM. The scale bar
shown is 55µm.

tive I designed suffers from chromatic aberration such that the focal plane

at λ = 532nm is displaced by 0.96mm as compared to the focal plane at

λ = 461nm. It is important to create the ODTs in the same transverse plane

as the imaging plane for optimal imaging resolution. The phase profile gen-

erated and displayed on the SLM as a correction is displayed in Figure 2.5

where I have used the ffourier = 75.08mm, see Equation (2.10), correspond-

ing to the effective focal length (EFL) of the objective at λ = 532nm.
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Figure 2.5: Fresnel Lens profile corresponding to a 0.965mm shift in the focal
plane to correct for the chromatic aberration in the microscope objective lens.

2.3.2 Linear Array of Optical Tweezers

The SLM can also be used to create multiple ODTs in 1D and 2D configu-

rations using the concept of a grating phase profile. There are various types

of grating profiles that one can apply and in this section we’ll be exploring a

few that have been commonly used in the literature. Starting with a simple

2D sinusoidal phase grating profile along the ξ axis, the complex amplitude

transmittance function is given by

tgrating(ξ, η) = ej
c
2 sin(2πf0ξ)rect

(
ξ

2wx

)
rect

(
η

2wy

)
(2.11)

where c represents the contrast of the phase grating, f0 gives the frequency

of the grating and wx, wy correspond to the width of the active area on the

SLM. The rect(x) function is of unit width and sets the aperture of the

beam along both ξ and η axes. In specific, for our SLM, wx = 16mm and
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wy = 12.8mm.

(a) (b)

(c)

Figure 2.6: (a) A section of the phase profile of a sinusoidal grating in 1D
with c set to 2π in Equation (2.11). The spatial period is set to 50 px. (b)
The full phase profile extended to 2D which will produce a linear array of
ODTs. (c) Simulation results using beam propagation integrals in MATLAB.
The computation is done in 1D for illustrative purposes with Ts = 25µm and
ffourier = 75mm.

Using the convolution theorem

F .T .{A(x, y) ·B(x, y)} = F .T .{A(x, y)} ∗ F .T .{B(x, y)} (2.12)

we obtain the analytical expression of the complex amplitude profile in the
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fourier plane as

U ′(x, y) = F .T .{tgrating} = 1
jλz

ejkzej
k

2z (x2+y2)

∞∑
q=−∞

Jq

(
c

2

)
sinc

(2wx
λz

(x− qf0λz)
)
sinc

(2wyy
λz

)
(2.13)

The sinc(.) functions are a result of the aperture of the SLM and thus

their widths depend on the size of the beam passing through the fourier

lens and hence the aperture of the SLM. It is straightforward to see that

due to the F .T . relation between the object and the image space, using a

larger sized beam would enable us to shrink the width of the sinc(.) function

thus creating tighter foci. The Bessel function of the first kind, Jq(.) is the

envelope of the diffraction pattern and sets the peak intensity of various

orders while the train of pulses is produced by the sinusoidal nature of the

phase grating. The results are plotted in Figure 2.6. If we keep wf0 � 1,

then there is negligible overlap of the various diffraction orders as shown in

Figure 2.6c, thus the |U ′|2 can be approximated as the squared sum of the

individual terms dropping all cross-terms

I ′(x, y) =
( 1
λz

)2 ∞∑
q=−∞

J2
q

(
c

2

)
sinc2

(2wx
λz

(x− qf0λz)
)
sinc2

(2wyy
λz

)
(2.14)

To vary the power in the different diffraction orders (which equivalently

translates to varying the trap depths), we use the fact that for a sinusoidal
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grating, the peak amplitude of a particular order is proportional to
(
Jq(c/2)
λz

)2
.

Thus, by varying the contrast we can control the relative power in the various

orders. In addition, notice that distance between two orders is f0λz is directly

proportional to the frequency of the grating. Figure 2.7 shows the effect of

varying the contrast and frequency of the phase grating on the peak intensity

and relative peak location, respectively.

(a) (b)

Figure 2.7: (a) Shows the variation of the relative power in various orders as
the contrast of the phase grating is varied. (b) Shows the separation between
two ODTs can be varied by tuning the frequency of the phase grating. Here
ffourier = 42mm.

In addition to the sinusoidal phase grating, we can also use a square

grating profile. The mathematical analysis for an analytical solution follows

closely to that of the sinusoidal grating with the exception that the envelope

function is also a sinc(.). Again there are two parameters associated with

this phase grating: i) contrast ii) spatial period. We generate binary phase

grating profiles of two different spatial periods and add them (modulo 2π).
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U1(ξ, η) = |U1|ejφ1 (field 1)

U2(ξ, η) = |U2|ejφ2 (field 2)

Utotal(ξ, η) = U1(ξ, η)U2(ξ, η) = |U1||U2|ej(φ1+φ2)

(2.15)

(a) (b)

(c)
(d)

Figure 2.8: (a) A small section of the phase profile of a binary phase grating
in 1D with c = π. By choosing this value of the contrast, the 0th order is
diminished. Note that the phase profiles were added modulo 2π. (b) The
same phase profile extended to 2D to produce an array of traps inside each
order. (c) Simulation results using beam propagation integrals in MATLAB.
Notice that the 0th order is diminished. (d) Experimentally obtained image
of an array of traps. The experimental results of the location, size and trap
separation agree well with the simulations.

This addition of a high frequency grating and a low frequency grating is

produced by multiplying the corresponding optical fields which corresponds
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to the convolution of their resulting fourier transforms using Equation (2.12).

This technique is used to get rid of the 0th order, which is sometimes unde-

sirable since it remains unaffected by any phase modulation applied on the

SLM. By adding another low frequency grating profile on top of an existing

high frequency grating, we can modulate within each order as a consequence

of the convolution theorem. This is particularly useful for us experimen-

tally since we always select the 1st order using a fixed pinhole (Figure 2.9)

and create the traps by modulating within that order. Figure 2.8 shows an-

other beam propagation simulation and its corresponding experimental result

showing the creation of a 1D array of traps within each order. As described

in the next chapter, we shall only use the 1st order to create our ODTs.

Whether we use a binary grating or a sinusoidal grating, both suffer from a

mathematically inherent problem of a decreasing envelope. In particular, for

a sinusoidal phase profile, the envelope is a bessel function of the 1st kind

while for a binary grating profile, the envelope is that of a sinc(.) function.

Figure 2.8d shows the experimentally obtained intensity profile in the fourier

plane of a 400 mm lens where the intensity is seen to decrease as we move

away from the center of a particular diffraction order. This problem can

be avoided by specially designing binary phase gratings which are optimized

to keep the intenisty uniform across a pre-defined set of spots. In the next

section, a binary Dammann phase grating profile is designed to create equal

intensity focused spots in the fourier plane of a lens. Considerable work has

been done on the design of Dammann phase profiles and the interested reader
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is referred to [44–49].

Figure 2.9: We use an intermediate focal plane to spatially filter out all orders
except the 1st. The 1st order contains all the information and at the same
time has the highest power.

2.3.3 Optimizing the trap depths

We have seen in the section above how to split a single beam into an array

of spots in the fourier plane of a lens. This process has been of consider-

able interest for switching systems, in the past, to supply optical power to

arrays of components such as digital-optical logic gates, optically bistable

devices or electro-optical modulators. All of these applications require uni-

form intenisties across all spots. A lot of work has been done on improving

Dammann gratings to ensure precisely uniform illumination across the fo-

cused spots in a 2D array. We use a binary Dammann phase profile to ensure

a uniform trap depth (within 2%) across a 1D and 2D array of ODTs. The

design process involves optimization, therefore we start by defining a merit
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function6 which is selected as the standard deviation of the peak intensities

of N spots in the array, where N is the number of ODTs to be created. As we

shall soon see, there would be multiple diffraction orders (beyond N), but for

experimental purposes, they shall all be ignored since their peak intensities

will not be uniform with the N traps of interest.

In the previous section we generated a phase profile by summing two

square waves of different frequencies. A typical binary Dammann grating

can be viewed as a weighted sum of multiple square waves of varying fre-

quencies such that the resulting fourier transform of the modified electric

field generates the desired number of traps with the appropriate spacing. It

has been shown in [48] that as the size of the desired array grows, the de-

grees of freedom increase thus causing the computational complexity to rise

exponentially. We choose an arbitrary contrast level of π, thus the degrees of

freedom (d.o.f) in the optimization process are merely the transition points

in a single period (see Figure 8).

Let the size of the array be N = 2M + 1 where M labels the diffraction

order corresponding to a single trap7. Since a binary phase grating produces

equal intensities in the positive and negative orders (symmetric about the 0th

order), thus we require approximately N
2 d.o.f [49, 50]. By varying these set

of unknown transition points for a normalized single period of the grating,

we minimize the merit function to within 2% intensity variation. Figure 2.11
6Also called an objective function or cost function.
7The orders go from −M th to +M th including the 0th order.
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Figure 2.10: A single period of an optimized Dammann phase grating to
generate a linear array of 8 ODTs of equal peak intensities. The transition
points used for optimization are marked with the arrows. Notice that the
transition points are symmetric in the sense that starting from 0.5, the values
at which the transitions occur are exactly the same as the first 4 transition
points starting from 0. Thus, the d.o.f for this optimization routine were
chosen to be N

2 = 4.

shows the simulation and experimental results obtained where we closely

followed the procedure by Walker and Morrison [48, 49] for an array of size

N = 8 and N = 13.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: The optimized phase profile for a Dammann grating to produce a
1D array of (a) 8 and (b) 13 ODTs. (c),(d) 1D Simulation results using beam
propagation integrals in MATLAB. Notice that the 0th order is diminished
for an even number of traps. The simulations were performed by choosing
the ffourier = 400mm and Ts = 12.5µm. (e),(f) Experimental results of 1D
arrays, imaged in the fourier plane of a 400mm lens, by displaying the phase
profiles along with the appropriate wavefront correction (Figure 2.13) onto
the SLM. Notice that the experimental results again agree precisely with the
simulation results and the location of the spots are exactly as predicted by
the beam propagation code.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: The optimized phase profile for a Dammann grating to pro-
duce a 2D array of (a) 64 and (b) 169 ODTs. (c),(d) 2D Simulation results
using beam propagation integrals in MATLAB. Notice that the 0th order is
diminished for an even number of traps. The simulations were performed by
choosing the ffourier = 400mm and Ts = 12.5µm. (e),(f) Experimental re-
sults of producing 2D arrays of 64 and 169 ODTs, respectively, by displaying
the phase profiles along with the appropriate wavefront correction provided
by the manufacturer (Figure 2.13). Notice again that the experimental re-
sults agree with the simulation results obtained from the beam propagation
code.
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Figure 2.13: The wavefront correction, provided by Hamamatsu, which must
be applied to any computer generated hologram (CGH) before uploading
onto the SLM. This corrects for the non-linearities in the response of the
pixels due to manufacturing defects in LCD display of the SLM.

2.4 Arbitrary Trapping Geometries

Up until now we have only considered standard ODT geometries such as 1D

and 2D gratings. For arbitrary beam shaping, there are various computa-

tional imaging algorithms available which iteratively compute the phase pro-

file required to produce a given intensity distribution. Here we show the use

of the most basic phase reconstruction algorithm known as the Gerchberg-

Saxton (GS) Algorithm which has been used extensively for various appli-

cations in ultracold atomic physics such as realizing quantum Ising models

using Rydberg atoms [51] and to create highly uniform micro-trap arrays

[52].

We already know that the relationship between the field at the SLM

plane and the image plane is that of a F .T .. The goal of the phase retrieval

algorithm is to find the phase profile at the SLM plane such that, when

Fourier Transformed, it would produce the target intensity distribution in
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the image plane. As you can probably notice, the amplitude in the SLM

plane as well as the phase in the image plane are unspecified and hence

unconstrained. For ultracold systems, it is well known that for a FORT under

the dipole-approximation, the phase of the light doesn’t affect the trapping

profile. Hence the phase in the image plane is truly unconstrained. On

the other hand, the amplitude profile in the SLM plane could in principle be

anything, but for all practical purposes, it more often than not a 2D gaussian.

Figure 2.14: The flow chart for the GS algorithm for shaping the intensity
profile of an incoming beam. At the image plane, the magnitude of the field
is replaced by the target field amplitude before taking the inverse F .T .. Sub-
sequently, at the SLM plane, the magnitude of the resulting field is replaced
with the fixed amplitude profile of the input beam before moving on to the
next iteration.

To illustrate the importance of understanding the constraints, let us take

the naive approach (see Figure 2.15) of simply using the inverse F .T . of the
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Figure 2.15: The inverse F .T . of a ring lattice ampltidue distribution along
with a random phase distribution. The required electric field at the SLM
plane is computed in MATLAB. The required amplitude profile looks equally
daunting as the phase profile and the SLM can’t modulate both at the same
time.

amplitude profile U ′(x, y) =
√
I(x, y) combined with a random phase profile.

This gives us the required field at the SLM plane which includes an amplitude

as well as a phase profile to modulate the incoming beam. This is clearly

useless for us since we can only modulate the phase of the incoming beam

but not its amplitude. Thus the amplitude profile right after the SLM would

be exactly the same as at the input of the SLM, which is usually selected to

be a gaussian.

The GS algorithm circumvents [53] this issue by incorporating an iter-

ative sequence of F .T . and inverse F .T . and repeatedly constraining the

system with the gaussian input amplitude profile. At each iteration, the

error between the target intensity distribution and the predicted intensity

distribution is computed and serves as the merit function of the optimiza-

tion routine. The procedure of the GS algorithm is as follows:

(i) The spatial amplitude profile in the SLM plane is A(ξ, η), and remains
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fixed during any iteration. The initial phase Φ0(ξ, η) is chosen to be a

random phase profile. This sets the optical field in the SLM plane as

A(ξ, η)ejΦ0(ξ,η).

(ii) The optical field in the image plane of the objective is obtained by

F .T .[AejΦ0 ] = |A(x, y)|ej arg(A(x,y))

(iii) |A(x, y)| is then replaced by the target amplitude profile T (x, y) =√
I(x, y) to set the new optical field in the image plane as T (x, y)ej arg(A(x,y)).

(iv) This field is inverse F .T . to obtain the τ(ξ, η)ejΦ1(ξ,η).

(v) τ(ξ, η) is subsequently replaced by the fixed input amplitude profile

A(ξ, η) to set the new optical field in the SLM plane as A(ξ, η)ejΦ1(ξ,η).

(vi) Steps (ii)-(v) are iterated over and over until the error between T (x, y)

and A(x, y) drops below an arbitrary threshold.

The block diagram of the GS algorithm is shown in Figure 2.14. Note

that the error function can be arbitrarily defined, and, in our case, we choose

the RMS error which is given as

ε =
√√√√ 1
N

∑
x,y

(T 2(x, y)− A2(x, y))2 (2.16)

where N is the total number of pixels used in the computation.

In addition, it is possible to feedback the in-situ intensity pattern and

then make small corrections to the target amplitude profile T (x, y) + ε(x, y)
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Figure 2.16: The GS algorithm may be modified by feedbacking the actual
image of the traps and correcting the target intensity profile to improve the
uniformity in the trap depths [43].

to obtain very high fidelity arrays of ODTs. This can be done by modifying

the GS algorithm and was demonstrated in [43] to improve the uniformity of

the trap depths in real-time Figure 2.16.

It is worth mentioning that using the GS algorithm alone without feed-

back results in grainy intensity profiles (ie, containing high frequency noise).

This can be minimized by either using fluoroscence imaging feedback or al-

ternative algortihms such as using conjugate gradient minimization [54]. The

experimental results shown in Figure 2.17 clearly show noisy ODTs which are

not ideal and would cause heating in the trap.
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(a) (b)

(c) (d)

(e)

Figure 2.17: (a) Shows the target intensity profile input to the GS algorithm.
(b) The phase profile generated after 50 iterations. (c) Experimentally ob-
tained image using a ffourier = 400mm lens. The noise in the image is
a result of the GS algorithm not converging to a low enough error (Equa-
tion (2.16)). The result is improved by giving the GS algorithm an improved
initial guess for phase profile (d). (e) As a result, the characterstic grainy
noise of the GS algorithm is removed. Although the traps are not all of equal
intensity, this can easily be corrected by introducing feedback as mentioned
briefly in Figure 2.16.
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2.5 Heating in the SLM Trap

The toggle rate of the Hamamatsu SLM is around 800Hz while the response

time of the liquid crystal is much slower at around 50Hz. If we look at the

time-frequency spectrum of the power fluctuation in the beam after reflect-

ing off the SLM, there is a clear peak around this toggle frequency. The

magnitude of this intensity fluctuation is only ' 1% of the signal amplitude

yet it can cause undesirable heating in the ODT if the resonance condition

is met. It was shown by [55] that, if the frequency of fluctuation is twice (or

a multiple of 2) that of the trap frequency, then the atomic motion can be

resonantly driven inside the trap causing parametric heating. This eventu-

ally leads to loss in atom number [56]. For our setup, the trapping frequency

therefore should not be close to 400Hz, 200Hz etc. Although the SLM has

not been tested with trapped atoms, yet it is important to note that if such a

situation arises, an AOM (acusto-optic modulator) should be used to flatten

off the intensity fluctuation by a simple feedback loop.
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Chapter 3

Optical Imaging System

With the goal to study the quantum effects at the single Rydberg atom level,

high-resolution in-situ imaging of individual atoms precisely localized in ex-

tremely tight optical dipole traps (ODT) is an indispensable tool in modern

ultracold experiments. This has been used, for example, to directly observe

the superfluid to mott transition at the single atom level [57], for simulating

the quantum Ising model [51] and for quantum computation [2, 58]. Using

the technique of assembling an array of ODTs, consisting of a large number of

identical Rydberg atoms, significant progress has been made towards achiev-

ing high-fidelity quantum control of Rydberg-atom qubits [59], a promising

area for quantum computation. To image Rydberg atoms suspended in an

ODT, a few research groups have placed the objective lens directly inside the

vacuum chamber [60, 61]. This has the advantage of enjoying a very high

numerical aperture (NA), however such lenses need to be specially designed
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to be compatible with an ultra-high vacuum environment (1x10−11 Torr). In

addition, most commercial solutions are either outrageously expensive or use

soft structural adhesives [62] that have high outgassing rates which limits the

lowest acheivable pressure for Ultra High Vacuum. We trade a high NA for

a longer working distance-the distance between the last optical surface and

the back focal plane-so that the objective lens is placed outside the vacuum

chamber.

In this chapter, I will describe the design of an infinity corrected, high-

resolution, low-cost, long working distance, objective lens consisting of four1

commercial spherical singlets from ThorLabs. Since the vacuum window

introduces significant spherical aberrations, it must be taken into account

during the design process, thus essentialy we are faced with a five-element,

lens design problem. For our experiment, it was important for this cus-

tom objective to be diffraction-limited for dual wavelengths: the 461nm Sr

tansition which is used for flouroscence imaging and the 532nm (Coherent

Optics Verdi V-Series) light used to create far off resonant optical dipole

traps (FORT) [63, 64]. The limit on the maximum acheivable optical reso-

lution is imposed by the numerical aperture (NA) of the vacuum viewport.

In our current experimental setup, the diameter of the vacuum viewport is

29mm while the distance to the center of the chamber is 52mm which sets

the maximum achievable NA ' 0.28. The Rayleigh criterion subsequently
1Acceptable performance could not be reached with three lenses.
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sets the diffraction limited resolution at λ = 461nm to be

1.22λ
2NA = 1.01µm

This novel microscope objective lens features a diffraction limited reso-

lution of 1.2µm, a working distance of around 90mm and a field of view

(FOV) spanning over 350µm, which can be used to image more than 500 x

500 lattice sites in a typical optical lattice [65]. Table 3.1 shows some of the

key features of our custom designed microscope objective lens.

461nm 532nm
Optical Resolution 1.16µm 1.36µm
On-Axis Strehl Ratio 0.93 0.81
Working Distance 87.96mm 88.81mm
Field of View 350µm 210µm
Depth of Field 4.0µm 4.7µm
Collimated Beam Diameter 35.6mm 36.0mm
Numerical Aperture 0.240 0.237
Collection Angle 27.9◦
Collection Solid Angle 4π×0.015 sr
Chromatic Shift 0.96 mm

Table 3.1: A summary of the important parameters of the designed micro-
scope objective.
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3.1 Optical Design

3.1.1 Introduction to Optical Design

OSLO is one of the many examples of optical design software out there

that can be used to design, analyse and optimize complex imaging optics

as well as illumination systems. An example of an imaging system is a

camera lens Figure 3.1a or an infinity-corrected microscope objective. OSLO

can also be used to perform Gaussian beam analysis on an optical system,

for example, to find the right lenses to optimally couple light into a single

mode fiber. In addition, it can be used to find the coupling efficiencies

into multimode and polarization maintaining fibers. Lastly, once the optical

design is complete, it is commonly used for tolerancing analysis to study

the effects of manufacturing defects as well as assembly errors. From what

follows, we’ll be assuming all units are in mm unless otherwise stated.

(a) A wide field camera
lens.

(b) The first iteration of
our custom designed ob-
jective.

There are two main regimes used for evaluating the performance of an

optical system: i) the geomterical optics mode which uses ray-tracing and ii)
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the physical propagation of light which uses direct integration.

Ray Tracing

There are two aspects of ray-tracing which are used by all optical design com-

putational environments: i) propagation of a ray through a medium and ii)

refraction of a ray at a boundary. The former is usually more computation-

ally expensive. Ray tracing is done by first discretizing space into blocks and

then using multiple iterations, one for each discrete space block, to propagate

a single idealized ray (a vanishingly narrow beam of light) from the object

surface to the image surface. A perfect ray is assumed to be linear over a

localized region of space. If the medium is isotropic and homogenous, rays

will propagate along straight lines. As seen in Figure 3.2, the translation

step involves computing the intersection of a line and a surface, while the

refraction step involves applying Snells law at the point of incidence:

n× k̂ = n′ × k̂

n sin(i) = n′ sin(i′)
(3.1)

Recall that a ray can be described by a vector n in the direction of prop-

agation with a magnitude equal to the refractive index of the medium in

which it propagates. Equation (3.1) says that the tangential component of

the ray vector is continuous at the interface between two refracting media;

a trivial result which can be directly derived from Maxwell’s equations in

integral form [66].
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Figure 3.2: Conventions used for a ray trace diagram. Point P is the point
of intersection between the ray which originates from the object point at A
in the direction u and, the refraction surface of radius R centered at C. The
refractive index is denoted by n while the thickness of the object is denoted
by l. Primed coordinates refer to the image space while unprimed coordinates
are for the object space. The radius of curvature of the surface shown is +ve,
|R|, and k̂ is the normal to the surface at P.

Paraxial optics deals with the propagation of light through a centered

optical system (not necessarily rotationally symmetric) which has the propery

that a ray which is sufficiently close to the optical axis at all points, will have

its angle of incidence on all surfaces necessarily small, hence sin(i) can be

approximated by the angle itself, and the law of refraction becomes:

ni = n′i′ (3.2)

The ray trace equations under the paraxial approximation are given in Equa-

tion (3.3) where the first equation is the transfer equation while the second

equation is the refraction equation at a particular surface. Note that it is

sufficient to trace merely two rays to determine the location of the image

point since all paraxial rays leaving a particular object point converge to the
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same image point. The paraxial approximation is commonly used by the

design software to quickly determine the location of the image, the principal

planes, the effective focal length (EFL), the NA, the image height etc.

ht+1 = ht + dtu
′
t (translation)

n′tu
′
t − ntut = −ht

1
R

(n′t − nt) (refraction)
(3.3)

Where ht is the height of the ray at the tth surface, while dt is the thickness of

the tth surface2. If it’s not obvious, note that u′t = ut+1 and n′t = nt+1. The

sequential application of the paraxial translation and refraction equations

allows one to trace any paraxial ray through an optical system. There are

multiple algorithms used to implement the above set of equations in com-

puter programs to execute successful paraxial ray tracing but these are not

discussed here and the interested reader is referred to [67].

Table 3.2 shows the result of a paraxial ray trace through the custom

objective in OSLO. The first column numbers the surfaces from 0 (object

surface placed at∞ in this case) to 11 (image surface representing the center

of the vacuum chamber). As mentioned earlier, this is a five element design

and hence the number of surfaces of the optical system are labelled 1-10.

OSLO gives us the data for the height (h in mm) and slope (u in ◦) of the

marginal and the chief rays.

The marginal ray (also called the axial ray) is defined as the meridional

ray (a ray lying in the Y-Z plane: see fig. 3.3) which starts from the center
2Thickness of the tth surface is the distance between the surface t+ 1 and surface t.
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Marginal Ray Chief Ray
Surface h(mm) u(◦) h(mm) u(◦)

0 0.0000 0.000 ∞ 0.076
1 17.8000 0.000 -0.0711 0.050
2 17.8000 6.879 -0.0676 0.050
3 22.2317 2.393 -0.0352 0.036
4 22.4905 0.369 -0.0312 0.060
5 22.6832 4.694 0.0000 0.039
6 22.1350 7.142 0.0046 0.060
7 22.0728 11.395 0.0051 0.038
8 21.8479 13.714 0.0092 0.059
9 13.6625 9.149 0.0449 0.040
10 12.2385 13.714 0.0467 0.059
11 0.0000 13.714 0.1000 0.059

Table 3.2: Paraxial ray trace of the marginal and chief rays through the
designed objective lens at 532 nm. The input beam radius is chosen to be
17.8 mm and the object side half-field angle is chosen to be 0.077◦ to ensure
that the height of the image is 100 µm.

of the object point at the optical axis, and touches the maximum aperture

of the optical system. In this way, the marginal ray is useful in determining

the aperture height of a designed lens. We can see this clearly from the table

where the value of h at surface 5 is the highest among all surfaces, which

implies that SRF 5 serves as the limiting aperture of this optical system. It

might seem like we still have some room for the aperture height to go even

higher (all the way to 25.4 mm) but remember that 0.1" from the edge is

deliberately left for the thickness of the lens spacers [Appendix B]. Just for

completeness, the location at which the marginal ray meets the optical axis

determines the location of the image surface. Notice further that the value
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of u at SRF 11, gives us the image space NA by NA = sin(u) = 0.237. The

value of h at SRF 0 and SRF 11 is zero by definition of the marginal ray.

The chief ray is defined as a meridional ray which starts from the edge of

the object and passes through the center of the aperture stop. In this way,

the chief ray determines the location of the aperture stop. We can again

see this clearly from Table 3.2 where the value of h at SRF 5 vanishes which

means the ray being traced cuts the optical axis at SRF 5, then, by definition

SRF 5 is the aperture stop of the system. The chief ray also tells us about

the height of the image: the value of h at SRF 11 is 100 µm.

To evaluate system performance more accurately, in particular, compute

the aberration coefficients, real ray tracing is required where Snell’s law is

obeyed exactly as stated in Equation (3.1). Lets look at a real ray trace,

shown in Table 3.3, through our custom designed objective and compare

the results with the paraxial ray trace done earlier. We shall again trace

the marginal and the chief ray to make a fair comparison and demonstrate

OSLO’s power.

The values of the ray traces in Tables 3.2 and 3.3 look approximately

the same but not quite exactly identical. Paraxial ray tracing gives us an

idealized version of how the rays would travel through the system. The

information about how the rays actually travel through the system is given

by the real ray trace, which is more accurate. Hence the results obtained

through the trace are used by the design software to extract information

about the aberrations in the optical system. Notice that in the last row (at
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Marginal Ray Chief Ray
Surface h(mm) u(◦) h(mm) u(◦)

1 17.8000 0.000 -0.0711 0.050
2 17.8000 7.178 -0.0676 0.050
3 22.3516 2.538 -0.0352 0.036
4 22.5172 0.574 -0.0312 0.060
5 22.8589 -4.715 0.0000 0.039
6 22.5494 -7.174 0.0046 0.060
7 22.0049 -11.503 0.0051 0.038
8 21.2529 -13.791 0.0092 0.059
9 13.1027 -9.199 0.0449 0.040
10 12.6708 -13.791 0.0467 0.060
11 0.0002 -13.791 0.1000 0.060

Table 3.3: Real ray trace of the marginal and chief rays.

the image surface) of Table 3.3, the height of the marginal ray is ' 0.2µm

(small indeed since this objective has been corrected for aberrations) but

not exactly 0 what we expected it to be, by definition. The reason for

this discrepency is the residual on axis Spherical Aberration, which I shall

delineate in the next section.

Diffraction of light

Using the direct integration approach, which is based on wave-optics, presents

a more accurate description of how a light beam evolves through an optical

system. This approach is based almost entirely on the scalar wave approx-

imation. The diffraction limit of a system is only explained when we take

the wave nature of light into account. OSLO uses the Fresnel Diffraction

integrals to propagate the wavefront from one plane to another, the theory
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of which was discussed in detail in the previous chapter.

3.1.2 Why Does It Work: Performance Evaluation

To understand and calculate how a lens performs under real test conditions I

will use several metrics to describe various aspects of its performace such as

Modulation Transfer Function (MTF) curves, the spot diagram analysis and

ray-intercept curves. To completely specify an optical design, it is convenient

to use the lens surface data table as shown in Table 3.4. It contains the

curvatures, thicknesses and the materials of all the surfaces making up the

system.

Surface Radius Thickness Material
1 ∞ 4.0 NBK-7
2 77.2 37.000 Air
3 205.0 6.2 NBK-7
4 -205.0 29.887 Air
5 90.1 6.7 NBK-7
6 ∞ 0.500 Air
7 65.2 6.2 NBK-7
8 171.6 34.525 Air
9 ∞ 2.667 Corning 7056
10 ∞ 50.665 Vacuum

Table 3.4: Lens Surface Data. The lenses used (SRF 2-8) are all from Thor-
labs: LC1611, LB1199, LA1399 and LE1015. All units are in mm.

As mentioned before, we used 2" commercial spherical lens elements from

ThorLabs, and the radii of curvatures as well as thicknesses were taken from

their online list of catalog lenses. The material column shows the optical
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material used after the corresponding surface. Merely entering this lens

surface data into OSLO autmatically generates the lens drawing as shown in

Figure 3.3.

Figure 3.3: Lens Drawing: The system layout of the custom objective is
shown with three rays traced from an on-axis point on the object located at
∞. The last optical element is an optically flat vacuum viewport window.
The rays shown meet at the center of the vacuum chamber.

Graphical Ray Analysis

Figure 3.4 shows the spot diagram, at λ = 532nm, which results from tracing

a large number of rays from a single on-axis object point through the system.

The value of the diffracton limit is equal to the radius of the Airy disk and is

shown by the solid black line. Since all of the input cone of rays originating

from an on-axis object point, filling up the aperture, converge within the

Airy Disk, we say that the system is diffraction limited. The values of the

root-mean-square (RMS) sizes in different directions are also shown after a

real ray trace is conducted through the system. For an ideal system free of

aberrations, we would expect all rays to converge precisely at a single point.
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Mathematically, we expect the intensity to be δ(r = 0). This is clearly not

the case; the spot is blurred out because of the various imperfections present

in the system which will be quantified in the next section.

Figure 3.4: Spot Diagram: The green marks show the location of geometrical
rays striking the image surface after originating from a uniformly illuminated
on-axis object point while the black solid line delimits the diffraction limit
of the custom objective. Since the system has an inherent cylinderical sym-
metry, the RMS spot sizes (diameter) in the X and Y directions are equal.

The RMS spot size (diameter) gives us a rough measure of the spread

of the rays in which most of the energy is contained but this interpretation

should only be taken with a grain of salt since almost never, in a lens design

process, would one use the geometrical RMS size (diameter) to quantify the

diffraction limited nature of the lens. As a matter of fact, the most useful

analysis comes from the wavefront propagation methods through which we

can obtain the MTF curves and the Point Spread Function (PSF). Neverthe-

less, we can understand the RMS spot size (diameter) mathematically using
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the concept of ray-displacements3, ∆X and ∆Y

〈σx〉2 = 1
N

N∑
i

(∆Xi − 〈x〉)2

〈σy〉2 = 1
N

N∑
i

(∆Yi − 〈y〉)2

〈σr〉2 = 〈σx〉2 + 〈σy〉2

(3.4)

where

〈x〉 =
N∑
i

∆Xi

and similarly for 〈y〉. ∆Xi is the ray displacement4 of the ith ray traced. Ray

displacements are used to quantify aberrations in an optical system. The

values of {σx, σy, σr} are shown in Figure 3.4 as geometrical RMS spot sizes

(diameter).

Chromatic aberration finds its origin in the fact that the refractive index

of glass n(λ) varies with wavelength. This is called dispersion. The objective

lens that I have designed is diffraction limited for both 461nm and 532nm

but I did not achromatize the design which is done by using two different

types of optical materials in the lens system. Therefore our system suffers

from chromatic aberration. For the purposes of our experiment, we are only

concerned with the primary axial color which is found, again using OSLO,
3Also called ray deviations, ray-intercepts or ray errors.
4The deviation of a traced ray from the reference ray where the reference ray is the ray

which originates from the center of the object point and passes exactly through the center
of the aperture stop.
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to be 0.956mm. Primary axial color (also called longitudinal chromatic

aberration) is defined as the variation of the focal plane between the two

wavelengths. Other chromatic aberration effects such as lateral chromatic

aberration, which affects the magnification, and secondary spectrum, which

is the residual chromatic aberration at λ 6= 461nm 6= 532nm, were not

important for our experimental purposes and hence were ignored.

Transverse ray plots (also called ray-intercept curves) are used to summa-

rize the performance of the lens and are particularly useful to identify specific

types of aberrations that are manifestly undercompensated in an optical de-

sign. A detailed analysis of the ray trace curves is beyond the scope of this

thesis however the interested reader is referred to [67, 68]. The ray intercept

curves for our objective are shown in Figure 3.5. The three curves show the

information for three arbitrarily selected object heights (field points in this

case since the object is at∞). The X axis labels the entrance pupil fractional

coordinate while the Y axis is the ray displacement w.r.t the chief ray. The

scale of the plots gives a quick idea of the amount of blurring that would

take place for a particular object point. The ray intercept curve shown in

Figure 3.5a is an S-shaped curve, which is typical of a system suffering from

spherical aberration, with a maximum value of ' 1µm. It shows that for an

axial point, the blur radius will have a magnitude of about 1 µm, in close

agreement with the diffraction limit quoted earlier in Table 3.1. Its clear

that the magnitude of the error increases for those rays passing closer to the

edge of the entrance pupil’s aperture. Indeed our design, at λ = 532nm has

66



residual spherical aberration for an on-axis object point. Notice also that

for an axial point, the curve is always antisymmetric (odd function) since by

definition, there is no astigmatism or coma for an on-axis point. For an off-

axis point, a system suffering from pure coma would exhibit a characterstic

U-shaped curve. Adding this U-shaped curve to the S-shaped spherical aber-

ration curve produces an asymmetry in the spot diagram which is exactly

what the ray-intercept curves in Figures 3.5b and 3.5c show, where one arm

is elongated compared to the other. Therefore our system suffers from coma

at larger field points, which correspond to larger deviations from the axial

object point. This was demonstrated experimentally and will be illustrated

in the next section (Figure 3.16).

(a) (b)

(c)

Figure 3.5: Simulation of ray intercept curves for λ = 532nm, computed for
various field points describing the types of aberrations affecting the quality
of the diffraction limited spot. (a) Object is on on-axis. (b) Object is 70 µm
off-axis along the Y axis. (c) Object is 100µm off-axis along the Y axis.
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Wavefront Anlaysis

Now, lets turn towards a more complete theory for the propagation of light

which yields significantly more accurate results as compared to geometrical

optics alone. Wave propagation is based on wavefronts, which are surfaces

of constant phase. For a spherical wave, eikr

r
, setting the argument of the

exponential to a constant yields wavefronts as spherical surfaces. For ev-

ery point on the image plane, there is a corresponding spherical wavefront

converging to that point. This is how perfect image formation is described,

for example, in the paraxial approximation. In a real system, the actual

wavefront always deviates from this reference wavefront and this difference is

quantified by the "Optical Path Difference" (OPD) or wavefront aberration,

Wa. Figure 3.6 illustrates these concepts by showing the reference wavefront

corresponding to a geometrically perfect point image. It can be seen from

the figure that by retarding or advancing the ideal wavefront in a 2D plane,

we can construct the real aberrated wavefront surface. This manifests itself

as the optical phase difference of a scalar optical field : eik(r−Wa).

It is useful to represent the wavefront in the form of polynomials, called

Zernike Polynomials. (In principal we can choose any orthogonal set of poly-

nomials but it turns out that the commonly observed aberrations in optical

systems have an outstanding resemblance to the Zernike polynomials.) They

form an orthogonal basis set in the 2D polar coordinates (ρ, θ) over a unit

circle, where ρ is the radial coordinate while θ is the azimuthal angle. Denot-

ing the ith Zernike polynomial by Zi(ρ, θ), the wavefront error can be written
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Figure 3.6: The figure shows the concept of the OPD using a hybrid picture
between geometrical optics and wavefront propagation. The reference sphere
corresponds to a wavefront converging to the ideal image point in the paraxial
limit while the real wavefront is produced by including the effects of the
aberrations. YC defines the actual location of the image while RSY is the
ray displacement from the ideal. In the previous section, we saw plots of
RSY which were called the ray intercept curves.

as [69]:

W (ρ, θ) =
n∑
i=0

ciZi(ρ, θ) (3.5)

where ci are the aberration coefficients of the expansion. Different terms

contribute different types of aberrations.

Now, lets talk about the Point Spread Function (PSF) of an optical sys-

tem. It is interesting to note that, what a physicist calls the Green’s function

is the impulse response to an electrical engineer and the point spread function

to an optical engineer. As was described in the previous chapter, the scalar

electric field at the image plane can be computed using Fresnel diffraction
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equation (see Section 2.1) which is repeated here for convenience.

U(x′, y′) ∝
ˆ ∞
−∞

ˆ ∞
−∞

P (x, y) exp
[
i
2π
λd

(xx′ + yy′)
]
dxdy (3.6)

where (x, y) are the coordinates in the exit pupil (input transverse plane) and

(x′, y′) are the image space coordinates (output transverse plane). The limits

of integration are often set by the aperture of the exit pupil which is given

by P (x, y). For example, for a typical spherical lens, its a circ(r) function.

Notice that the double integral shown in the Equation (3.6) is essentially

a 2D Fourier Transform of the aperture with frequency variables vx = x′

λd

and vy = y′

λd
. This allows us to make use of the powerful tools of Fourier

and linear systems theory. In particular, OSLO uses the 2D Fast Fourier

Transfrom algorithm to compute this integral for a grid of points located in

the object space. The PSF function is defined as the irradiance of the optical

field at the image plane:

PSF(x′, y′) = |U(x′, y′)|2 (3.7)

As shown in Figure 3.7, the PSF at both wavelengths resembles a typical Airy

Disk intensity pattern. The diffraction limit and Airy disk radius are inter-

changeable terms and its values for both wavelengths are quoted in Table 3.1

but will be repeated here for convenience:

461 nm : 1.16µm
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532 nm : 1.36µm

The Fourier Transform of the PSF is called the Optical Transfer Function

(OTF) which measures the accuracy with which various frequency compo-

nents in the object space are reproduced in the image. The OTF is in general

a complex function and is defined as:

OTF(vx, vy) =

ˆ ∞
−∞

ˆ ∞
−∞

PSF(x′, y′)exp [i2π(vxx′ + vyy
′)] dx′dy′

ˆ ∞
−∞

ˆ ∞
−∞

PSF(x′, y′)dx′dy′
(3.8)

where I have normalized OTF(0, 0) = 1. There are two general properties of

the OTF:

1. OTF(−vx,−vy) = OTF∗(vx, vy)

2. |OTF(vx, vy)| 6 |OTF(0, 0)|

where * denotes the complex conjugate operation.

The OTF includes the effects of both geometric aberrations and diffrac-

tion and plays a key role in the assessment of image quality. We find that

the OTF is identically zero for spatial frequencies larger than a certain value,

the cutoff frequency v0, which is given by

v0 = 2NA
λ

(3.9)

The magnitude of the OTF is called the Modulation Transfer Function

(MTF) while the phase is called the Phase Transfer Function. The MTF
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(a) 461 nm

(b) 532 nm

Figure 3.7: PSF scans for an on-axis object point at the two design wave-
lengths. The PSF for 461nm resembles the well-known Airy disk. The
diffraction limit is the first minimum of the PSF which is numerically com-
puted by OSLO in the spot diagram analysis Figure 3.4. Notice that the
peak values are always less than 1 due to the presence of aberrations. This
has important consequences when determining the diffraction-limited Field
of View of the objective.
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curves are densely packed with information which can be used to predict the

performance of the optical system and many manufacturers provide them to

showcase the performance of their design. A typical plot has Modulation on

the y-axis while spatial frequency on the x-axis.

Modulation : Also called modulation depth5 is defined in terms of the in-

tensities as

M = Imax − Imin
Imax + Imin

(3.10)

and M ∈ [0,1]. Its used interchangeably with the popularly known

quantity, the optical contrast.

Spatial frequency : It is an alternate way to describe the resolution of an

optical system. In particular, its inversely proportional to the resolu-

tion in µm:

Res(µm) = 1
2 Res(lp/mm) (3.11)

where Res(µm) is approximately 6 equal to the diameter of the Airy

Disk.

Figure 3.9 shows the MTF curve for our objective, computed in OSLO

for λ = 461nm at varying field points in the object space. The X axis labels

the spatial frequency which is a measure of the ability of a lens system to

resolve a pair of lines while the y axis labels the value of the MTF which
5Also called Michelson Contrast.
6It is approximate since spatial resolution uses an intensity square wave in the object

plane while the Airy Disk is produced due to a circular flat top intensity profile in the
object space.
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Figure 3.8: The figure illustrates the concept of contrast and how it applies to
our test setup. The various sized objects in the 1951 USAF target serve the
purpose of a periodic grating. The spreading or blurring of the grating after
the objective is because of the convolution of the PSF with the periodic input
intensity distribution which can be seen to be a train of rect(·) functions.

is proportional to the contrast. Recall that field points are used instead

of object heights when the object is located at ∞, which is the case for

our infinity-corrected objective. The on-axis curves have a higher contrast

than the off-axis curves and going further away from the optical axis clearly

degrades the contrast performance, as can be seen by comparing the blue and

the green curves. Notice that all the curves only exhibit marginally lower

contrast than an aberration-free lens (see ideal curve). The modulation (or

contrast) is seen to decrease at higher spatial frequencies (which corresponds

to smaller object sizes in µm). As the modulation decreases, it gets harder

to resolve light originating from two object points placed close to each other

Figure 3.8. Notice that a spatial resolution of 228.3 lp/mm corresponds to a

single rectangle of width 2.19µm which we experimentally resolved at λ =

461nm as well as λ = 532nm as shown later in Section 3.2. It is worth
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Figure 3.9: The MTF lens performance curve at λ = 461nm computed by
performing a 2D fft of the PSF for various field points. The solid black
line represents the absolute theoretical limit of contrast for a system free of
aberrations. For any real system, the curves must always lie below this limit.
The analysis is done for three field points: 0.09461◦ representing 70% of the
field, 123µm away from the optical axis, while 0.1352◦ is the curve at full
field, 175µm away from the optical axis. T is for Tangential analysis while S
is for Sagittal analysis.

noting in the figure above that the aberrations which cause asymmetry for

off-axis object points, such as astigmatism, cause a difference in the contrast

produced by the rays propagating in the tangential and sagittal planes.

Next, let’s analyse the diffraction limited Field of View of the objective.

This is important, for example, to calculate the maximum number of ODTs

that can be imaged, with diffraction limited resolution, in a linear array.

This gives us valuable information about how large of an optical tweezer
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array we can create during the experiment using the SLM. A widely used

figure of merit to define the diffraction limited field of view (FOV) of an

optical system is the region in which the Strehl ratio is greater than 0.8. The

Strehl ratio is defined as the peak value of the actual PSF to the peak value

of the an ideal PSF (without any aberrations). Referring back to Figure 3.7,

its clearly seen that both PSFs have a peak value of less than 1 at the on-axis

image space coordinate which agrees with the fact that our designed system

is not ideal (ie paraxial regime is not enough). Using this criterion, I found

the FOV for λ = 461nm to be 400µm and at λ = 532nm to be 210µm.

3.1.3 How Does One Design a Lens: Optimization

Optimization referes to improving the performance of an optical system

by varying certain parameters of the system iteratively. Typically these

paramters are called "optimization variables" such as the radii of curva-

tures, element thicknesses, element-to-element separations and the optical

glass types. All of these parameters can be controlled in the lens surface

data spreadsheet shown in Table 3.4. The first step is to identify the con-

straints on the optical system which are usually imposed by the geometry

of the environment in which the lens is going to be used. For example, for

our experiment, a minimum working distance of ∼ 80mm was one of the

constraints. Of course, image quality (characterized in terms of the Aberra-

tion coefficients) is another important criterion to achieve diffraction limited

performance. In OSLO, these constraints are called operands. The system’s
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performance is described quantitatively by a user-defined scalar merit func-

tion which is a weighted sum of the squares of the operands:

φ(x) =
m∑
i

wif
2
i (3.12)

where the vector x represents the set of optimization variables, fi are the

operands while wi are the associated weights. Each component is written as

the departure from a specific target value. There are many different optimiza-

tion algorithms in use today. OSLO uses Damped least squares optimization

which is specifically useful for nonlinear systems. For more information on

how optimization is applied during the optical design process, please refer to

[68, 69].

It is often useful to start with an existing design and in our case I used

the first ever long working distance objective designed specifically for imaging

atoms through a vacuum chamber [70]. Our goal was to design an infinity-

corrected and diffraction limited objective, maximizing the numerical aper-

ture given the minimum working distance imposed by the geometry of the

vacuum viewport. It should come as no surprise that OSLO uses raytracing

to compute the values of the operands and hence the merit function. The

goal is to minimize the merit function in an N-dimension space where N is

the number of variables (or parameters to be varied in the optical design).

It is important to understand the topological nature of the merit-function

space. There could be many local minima with several hills and valleys as
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Figure 3.10: The figure shows a simplified 1D optimization topology with two
local minima surrounding a global minimum. OSLO light is programmed to
find local minima depending on the initial conditions used for designing the
lens.

the parameters are varied. Each hill or valley may have smaller bumps and

depressions which, to OSLO, would look like local minima and thus it would

get stuck in that local minima which is certtainly a source of frustration for

the optical designer. The minima we end up in depends on the initial values

chosen by the lens designer. Therefore knowledge of existing lens designs

can dramatically help in determining the right starting point which would

eventually lead to diffraction limited performance. The global minima [71] is

the bottom of the lowest valley (see Figure 3.10). Finding the global minima

is a very computationally expensive process, not included in the OSLO Light

version I used.

The whole idea of a multi-element objective lens is to compensate for

the positive aberrations of convex surfaces with the negative aberrations

of concave surfaces. As mentioned before the NA and the EFL were kept
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fixed which was easily achieved by allowing the radius of curvature of the last

surface to vary during the optimization routine. The radii of curvature of the

other seven surfaces, and their thicknesses were varied during the iterations.

This gives us a N = 8 + 4 + 3 = 15 variables. The operands I used in the

final stages of the optimization process and their corresponding weights are

shown in Figure 3-11a. The operands were chosen to minimize the squared

sum of all spherical aberrations up to 7th order and to minimize coma and

astigmatism up to 3rd order. Figure 3-11b shows the iterations in one of

optimization routines I ran in OSLO during the designing phase. Initially, I

varied all 15 variables until diffraction limited performace was acheived given

the contraints mentioned earlier. Once convergence was achieved, the first

element was replaced with the closest 2" spherical lens available commercially

(ThorLabs) and the program was allowed to re-optimize with N-3 variables

thus reducing the dimensionality of the variable space. This process was

repeated until all elements were commercial spherical singlets. It comes as

no surprise that the final design looks remarkably similar to the one designed

by W. Alt which suggests that these lens elements provide optimal aberration

compensation for an optical system with the last element as a thin vacuum

window. In addition, I had various special contraints for the optical design

such as the minimum element-to-element spacing not drop below 0.50 mm

to make it easy for the parts to be machined and device to be assembled.

It must be mentioned that designing a diffraction limited objective for

two wavelengths without using two different types of glass elements is not as
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Figure 3.11: Optimization was perfomed using OSLO’s built in damped least
square optimiztion algorithm. (a) While setting up the operands, some were
assigned a higher weight while for certain others the weight was set to 0.
OSLO is programmed to minimize each array labelled OCMx to 0 hence for
example, at the end of the optimization process, the value of PU should be
close to 0.2424. (b) Shows the iterations during performed for a single opti-
mization run. The damping factor is dynamically changed to vary the size of
the jump in the N dimensional optimization space during each iteration. The
"MIN ERROR" is the φ(x) as described in Equation (3.12) and is minimized
iteratively.

straightforward as running the optimization procedure for one of the two

wavelengths. Instead of choosing either of the two wavelengths, I used

λ = 515nm which served as a sweet spot between the two required de-

sign wavelenghts. As seen in the previous section, the Strehl ratio at 532nm

drops below 0.8 faster than for 461nm which causes the FOV to be different

at the two wavelenghts. As seen from the detailed performance analysis de-

scribed in the previous section using simulations in OSLO, it is clear that the

lens design was prioritized for the imaging wavelength 461nm rather than
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the trapping wavelength 532nm.

3.1.4 Looking Out for Manufacturing Errors: Toler-

ance Analysis

Since we designed and built the objective lens ourselves in house, it was

critical to understand how machining and assembly errors would affect the

overall performance of the system. OSLO uses both Monte-Carlo methods

and the method of Finite Differences to estimate how various errors in the

spacings, radii of curvatures, tilts and decentrations of various lens surfaces

would affect an arbitrarily set merit function including, but not limited to,

the RMS spot size (diameter), wavefront error, MTF or the boresight error.

In what follows, I analyse the effect of deviations of element to element

thickness by using the method of finite differences.

The only parameter under our control is the element to element sepa-

ration because all other parameters such as element thicknesses and errors

in the radii of curvatures of the lenses had standard tolerances provided by

ThorLabs. In the OSLO light version, I merely had access to the sensitivity

analysis and inverse sensitivity analysis. The first step in such analyses is

to define a merit function. I chose the merit function to be the error func-

tion generated earlier during the optimization process since it captures all

the relevant performance measures of an aberration-free objective lens. In a

typical sensitivity analysis, a set of parameters are deviated from their ideal
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value (one at a time) and the change in the merit function is computed. This

gives us a clear picture of the worst offenders ie which parameters affect the

performance the most. In this way, I can assign a tighter tolerance to that

particular parameter. In an inverse sensitivity analysis, a maximum allowed

value for the change in the merit function is arbitrarily selected, and sub-

sequently the tolerance limit for each parameter is found individually. The

result of both of these analyses is shown in the Figure 3.12.

(a)

(b) (c)

Figure 3.12: A typical result of tolerancing analysis in OSLO. (a) Shows the
sensitivity analysis performed by varying the element spacings, as the param-
eters, while subsequently computing the error in various merit functions. (b
& c) Show the results of inverse sensitivity analysis for the element spacings
and element thicknesses. The computation was done for λ = 532nm.
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The minimum tolerance possible for the spacers was 12.7µm for the ma-

chinist on campus. A sensitivity analysis was performed Figure 3.12a and

the errors in various merit functions were computed. The "TOL VALUE"

represents the quoted value of the machinist’s tolerance in mm. The three

spacings are represented by surfaces 2-6 (as described earlier in table 3.4).

The values given in the figure are in tolerance units given at the top of the

figure for various types of merit functions. The RSS value is the root-sum-

squared value very similar to the commonly used RMS value. The values in

the figure clearly show that almost all the important merit functions such

as FLD RMS OP (RMS wavefront error), EFL, DIST (distrotion) etc are

all orders of magnitude smaller than their NOM (nominal) values. In Fig-

ure 3.12b, I show the tolerance limit of the spacings to keep the change in

the error function less than 1x10−3 in absolute terms. Figure 3.12c shows

the tolerance limit of the element thicknesses to keep the change in the error

function less than 1x10−3. The tolerance limits obtained are clearly much

larger than our machining precision which shows that our design is robust

against nominal machining errors.

Note that I performed a manual tolerancing analysis of all spacings at

their tolerance limits. This gives us a more realistic case where errors are

introduced in the system simultaneously. To perform a complete analysis

in which all variables of the lens are varied randomly, following a certain

probability distribution (usually gaussian), Monte Carlo analysis must be

performed especially because the variables in a typical lens design can be
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large in number. Since I only had access to the OSLO light version, I did

not have the luxury to do such an analysis.

3.2 Lens Performance Evaluation

In this section I shall describe the lens assembly procedure I used and the

measures I took to ensure that the objective remained within the tolerance

limits. After the assembly of the lens, ex vacuo tests were performed on

the objective using the smallest objects I could find in the lab including the

1951 USAF target, the tip of a single mode fiber (SMF) and the focus of a

commercial 10X microscope objective of NA = 0.25. This gives us a range of

objects with varying sizes and shapes and, as we shall see in the results that

follow, the objective lens performed in close agreement with the predictions

of OSLO within the limits of experimental accuracy. I measured the FOV

as well as the PSF of the objective for both λ = 461nm and λ = 532nm.

The test setup employed, as shown in Figure 3.13, was a relay telescope

consisting of the objective lens in conjunction with an f = 1000mm spherical

singlet. This sets the primary magnification of the complete optical system

to be -13.3. Note that since the objective lens is designed to work alongside

the optically flat vacuum viewport, I used an exact replica of the vacuum

viewport installed in our actual vacuum chamber. The image was formed on

a CMOS ThorLabs DCC1545M monochrome USB 2.0 camera which has a

pixel size of 5.2µm corresponding to an effective pixel size of 391nm in the
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Figure 3.13: The optical schematic of the test setup used for all the experi-
mental tests performed on the objective lens. Various types of objects were
used including the 1951 USAF target, the tip of a SMF and the focus of a
commercial microscope objective.

object plane.

3.2.1 Lens Assembly

After doing a thorough tolerance analysis detailed in the previous section,

I ensured that the tilts and displacements were kept within limits. The

displacements were kept within the tolerance limits by high precision ma-

chining with tight mechanical tolerances (12.7µm) for the designed spacers

which separate the lens elements. The elements are precisely placed on-axis

inside a threaded standard lens tube (ThorLabs SM2L30) which was modi-

fied to accomodate the full 3.5" length of the designed objective. The lenses

were dropped in one element at a time, the lens tube nudged each time to

ensure the lens was sitting flat inside the tube. In addition, to minimize the

tilts, firstly I made the spacers press-fit with the internal diameter of the

lens tube and secondly, the spacers were designed in such a way that they

contacted each element exactly 2.54mm from the outer edge. This way I
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avoided the chamfers which were a possible source of error and would violate

the tolerance limits set by the analysis done in the previous section. The

slope of the spacer was matched to the slope of each spherical surface at the

point of contact to within 0.1◦ accuracy. The drawing files of the spacers

have been attached in Appendix B.

3.2.2 Diffraction-Limit and Field Of View

The simplest test which gave us an estimate of resolution of the optical

system was to use the 1951 USAF target which hosts a precise assortment

of spatial frequencies. The spatial frequency, as defined in Equation (3.11),

is inversely related to the width of a single rectangle in the test target. The

target was placed on a transverse translation stage (X-Y axes) and was back

illuminated with a collimated gaussian beam at λ = 461nm and separately

for λ = 532nm. The laser source at λ = 461nm was fibered into a 10m

long fiber (ThorLabs P3-405BPM-FC-10) and subsequently collimated using

a triplet collimator. Figure 3.13 shows the experimental test setup used while

Figure 3.14 shows the results obtained.

The PSF can be obtained experimentally by fitting a rectangular pulse

convolved with the PSF to the image profile. This is because the PSF is the

impulse response of a linear optical system. Using the concepts from linear

systems theory, given the impulse response and the input, we can therefore

find the output intensity of a linear optical system as:
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(a) 461 nm (b) 532 nm

Figure 3.14: Experimentally imaging the 1951 USAF target at the two design
wavelengths. Groups 6 and 7 are shown and are clearly resolvable. This
suggests that the resolution of this optical system is better than 2.19 µm
which corresponds to the 6th element of group 7.

Ĩ(x′, y′) =
ˆ ∞
−∞

PSF(x− x′, y − y′)I(x, y)dx dy (3.13)

The equation above is the convolution between the PSF and input in-

tensity profile. In words, this means that each point in the object plane

produces a PSF in the image plane. A weighted sum of these PSFs over

the entire object space, generates the final intensity distribution in the im-

age plane with the weights being proportional to the local emittance of the

point object. The computed value of the Airy Disk radius for λ = 532nm is

found to be 1.47 ± 0.11µm which is in close agreement to the theoretically

predicted value from OSLO. Note that we need not care about interference

effects since the the object is assumed to be incoherent which would be the

case, for example, when imaging single Rydberg atoms trapped in an opti-
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cal tweezer array. Next, I used a commercial 10x microscope objective from

Spencer with a NA = 0.25 to create a single tightly focused Gaussian spot

which was subsequently imaged by the custom objective. Again, using the

theory of wave-propagation, the image is the result of the convolution of the

PSF with gaussian intensity distribution which gave us a slightly different

answer for the Airy Disk radius at λ = 532nm as 1.58 ± 0.09µm.

To test the predicted values of the FOV of the objective lens, we raster-

scanned the tip of a SMF across the FOV of the objective by a manual

translation stage (X-Y). The first step was to ensure that the SMF was

approximately close to the optical axis which was achieved experimentally

by taking multiple horizontal scans (along the X axis) for each value of Y.

The value of Y corresponding to the largest FOV along the horizontal axis

was set as the Y coordinate of the optical axis. The process was repeated

for the X axis and in this way we found the (X-Y) coordinates of the optical

axis of the system at the plane of the SMF. During each scan, we took more

than 40 images with a spatial step resolution of 50µm. The resulting images

were fitted with a 2D gaussian function and the 1
e2 radius was plotted by

averaging the values from the X and Y slices obtained. Figure 3.15 shows

the experimentally computed FOV for both wavelengths of interest.

Note that sometimes an alternate definition is used to define the FOV as

the circle inside which the spot size (diameter) is within
√

2 times the on-axis

spot size (diameter). We used a more restrictive and stricter definition of the

FOV diameter. The FOV was determined as the diameter of the circle where
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Figure 3.15: Measuring the FOV of the objective lens by scanning the tip of
a SMF mounted on a two-axis translation stage. The region where the spot
size is approximately constant is defined as the diffraction limited FOV of
the objective.

the spot size (diameter) remained within 5% of the minimum on-axis value.

For λ = 461nm it was found to be 350µm and for λ = 532nm it was found

to be 300µm. Notice that there are two reasons for the difference in the spot

sizes (diameters) for the two wavelengths: i) the airy disk radius is larger for

λ = 532nm and ii) the mode field diameter of fiber is smaller at λ = 461nm.

The asymmetry in the direction of the raster scan is caused because of a

minor tilt of the objective lens w.r.t the fiber. Imaging the SMF outside the

FOV, we observed severe coma such that the spot size (diameter) increased

along one axis more than the other, asymmetrically. This is illustrated in

Figure 3.16.
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(a) (b)

Figure 3.16: An exagerrated illustration of imaging a SMF outside the
diffraction-limited FOV of an objective lens using λ = 532nm. (a) Shows
the simulation results when a point object is 495µm away from the optical
axis (at 45◦). (b) Shows the experimental image of the SMF, 500µm away
from the optical axis of the objective.

It is important for us to characterize the chromatic shift between the

two design wavelengths for our objective lens. This was found for all testing

configurations described above and was measured to be 0.965mm, in close

agreement with the theorectically predicted value of 0.96mm by OSLO.

3.3 Summary

In conclusion, I have presented the design of a custom, low-cost, long-working

distance, microscope objective lens, consisting four spherical singlet elements,

which is to be used in conjunction with a standard optical vacuum viewport.

After a gentle introduction to some important concepts necessary to work

with OSLO, I described the step-by-step process of optimization including the

selection of variables as degrees of freedom, and operands as important per-
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formance metrics of the lens system. Simulations were performed in OSLO to

show the diffraction limited nature of the objective which were subsequently

validated by ex vacuo experimental testing using numerous standard objects

including the 1951 USAF target and the tip of a SMF. It is worth mention-

ing a few additional groups which have successfully attempted to design their

own objective lenses: 1) Mark Saffman’s group [72] and 2) Lincoln Turner’s

group [73]. It is important to state that this design can be made to be acco-

modate other wavelengths by simply achromatizing the design with the use

of two different types of glass materials. The design process is general and

can be optimized for diffraction-limited monochromatic fluorescence imaging

at the D2 line of alkali metals such as the 780nm 5 S 1
2
to 5 P 3

2
transition

in Rb or the 852nm 6 S 1
2
to 6 P 3

2
transition in Cs and has been explicitly

demonstrated in [73].
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Chapter 4

Final Experimental

Characterization

Here I shall describe the final optical layout which has been successfully

built and tested ex-vacuo. It combines the high-resolution imaging with the

beam shaping setup to give our group the ability to perform a vast range of

experiments exploiting the tremendous control and precision associated with

the SLM as well the custom designed objective. Here is a brief description

of the optics used:

• F1 : Thorlabs AL50100G-A 100 mm Asphere. Mounted on a flipper

mount

• F3 : 400 mm Planoconvex lens used to expand the output SLM beam

• F4 : 125 mm Planoconvex lens used to expand the output SLM beam
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Figure 4.1: The final optical layout of system. It shows the green beam at
λ = 532 nm which is first expanded after undergoing phase modulation due to
the SLM and, is then directed through the objective to create extremely tight
ODTs. Also shown is the blue fluorescence which is collected and collimated
by the custom-designed objective lens and is subsequently imaged by the
1000 mm lens onto the sensor plane of CCD2.
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• F5 : 150 mm Planoconvex lens used to expand the input SLM beam

• F6 : -15 mm Biconcave lens used to expand the input SLM beam

• F8 : Biconvex 1000 mm Imaging lens

• BS1: Beam sampler for monitoring and controlling the power in the

traps

• BS2: Beam sampler for observing the images of the trap on the di-

agonostic CCD

• BS3: Beam splitter (50:50) used to re-direct the reflected beam off the

SLM

• PBS : Polarizing beam splitter used to improve the horizontal polar-

ization quality input to the SLM

• M1 : Broadband dielectric mirror mounted on a flipper mount

• DM1: ThorLabs DMLP567L long pass dichroic mirror (not shown in

the schematic)

• DM2 : ThorLabs DMSP490L short pass dichroic mirror is used to

separate the trapping beam with the imaging beam.

• PD : Photo-diode to measure the power in the beam and feedback to

the AOM. (not shown)

• MO : Custom designed microscope objective lens
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• A : Aperture

Since we plan to install the objective vertically (thus imaging the planes

parallel to the optical table), this sytem had to take into account the two

MOT beams: 461nm and the 689nm. The 461nm beam is responsible for

the blue MOT and was described in detail in Camargo’s thesis [74] while

the 689nm is used during the second stage of the laser cooling process to

create the red MOT and was described in Ding’s thesis [75]. To separate

out the different optical beams, necessitates the need for DM1 (not shown

in the optical schematic). In addition, since the imaging beam obtained

by fluorescence as well as the red-detuned trapping beam at λ = 532nm

share the same path through the objective, it was important to add a second

dichroic mirror DM2.

The aspheric lens F1 collimates the upward travelling MOT beam after

it passes through the objective lens. The mirror M1 and the aspheric lens F1

are mounted on a flipper mirror mount (ThorLabs MFF102) thus while the

MOT is being created, it is not possible to image or create the ODTs. It takes

around 0.8s for the flipper mirror to switch position from one state to another.

The path of the MOT beam at λ = 461nm goes through F1 →M1 → λ
4 and

back onto itself via retro-reflection (since opposite circularly polarized beams

of light travelling antiparallel to each other are required to create a MOT).

We used an asphere to collimate the light from the strongly focusing MOT

beam after the objective to ensure better collimation quality for the retro-

reflection. An exactly similar setup was employed for the red at λ = 689nm
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Figure 4.2: Imaging the 1951 USAF with all optics in their final positions.
The vacuum viewport (not shown) was included in between the objective and
the target since the objective performs optimally alongside the viewport.

beam which is not shown in the schematic since it lies symmetrically on top

of the microscope objective in a plane perpendicular to the optical layout.

After building the final optical system, a quick test of resolution was per-

formed using the 1951 USAF as before for the λ = 461nm and Figure 4.2

shows that all objects were resolvable suggesting that the system is perform-

ing as expected. The smallest object [Group 7, Element 6] is resolvable which

contains rectangles of size of 2.2µm.

4.1 Long Range, High Resolution Axial Imag-

ing

An additional requirement explored in the final setup was the ability to vary

the imaging plane for the λ = 461nm. One obvious way to do that is

to physically move the objective but since the MOT beams pass through
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Figure 4.3: Three additional lens elements are included in the fluorescence
imaging beam path. For an incoming collimated beam, the lens F2 creates
a magnified virtual image (inside the vacuum chamber). The lenses F7 are
commercial imaging lenses of fixed focal length which can image objects
between 300mm and ∞ away from its last surface.

the objective, that would affect the re-collimation of the MOT beams and

thus cause uneven forces along the vertical axis. This is undesirable since it

would shift the location of the center of the MOT away from the center of

the vacuum chamber and thus the null of the magnetic field. Therefore we

employed a different solution which is described in Figure 4.3.

• F2 : -500 mm biconcave lens

• F7 : Edmund Optics 50 mm fixed focal length lens (Stock# 63-248)
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For a 0mm shift in the focal plane, the lens F2 creates a magnified virtual

image (inside the vacuum chamber) which is then imaged by F7 onto a plane

exactly in the middle of the two commercial fixed focal length lenses labeled

F7. This is a real image and is created by the first commercial lens F7. The

second commercial lens then collimates this beam. This process utilizes an

intermediate imaging plane while maintaining a sufficiently high resolution.

Note that since the overall fluorescence imaging path is no longer infinity

corrected, the additional elements introduce unknown aberrations into the

imaging path thus the image quality is slightly degraded. In addition, the

action of variable focus causes the magnification to vary for each individual

shift in the focal plane. In the following section, I shall explore both of these

effects on our imaging system and quantify the shift in magnification as well

as the degradation in the imaging resolution.

On the contrary, to image an object in a plane shifted by, lets say 3mm,

(away from the focal plane of the objective), a virtual image is formed farther

away (as compared to the location of the original virtual image) and the fixed

focal length lenses is adjusted to focus this virtual image onto the plane

exactly in the middle of the lenses labeled F7. The second F7 lens is always

set to ∞ because it simply serves to collimate the beam (ie form the image

at ∞).

Figure 4.4 shows an image of the fixed focal length lens (on our cus-

tom C-mount). As mentioned previously, the lens can be adjusted to focus

objects at variable distances onto a single imaging plane and the markings
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Figure 4.4: The commercial fixed focal length imaging lens set to F/# = 1.4
is used to vary the imaging plane by upto 5mm.

corresponding to various shifts in the imaging plane are shown. The imag-

ing performance was characterized by using the 1951 USAF target and the

results for various focal shifts are shown in Figure 4.5. Clearly the imaging

performance is not the same as obtained without the the three extra optical

elements in the imaging path in Figure 4.3.

4.2 Magnification Analysis

To analyze the contrast, we take a single object (for example the horizontal

bars in Element 5) and integrate it along the horizontal axis to obtain a

better signal to noise level. The data was then fitted by a Gaussian I(r) =

I0 exp
(
−2r2

w2

)
to obtain the values of w for different objects selected from the
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(a) No additional lenses (b) 0 mm

(c) 0.5 mm (d) 1.0 mm

(e) 1.5 mm (f) 2.0 mm

(g) 2.5 mm

Figure 4.5: Shows the effect of varying the imaging plane on the resolution
test target. (a) Shows the image obtained without any additional lens ele-
ments in the imaging path. [(b)-(g)] Show the images obtained on the CCD
as the target was placed at increasing distances from the focal plane of the
objective. Only Group 7 is considered.

1951 USAF target at various magnitudes of shifts in the imaging plane1.

The images used for the analysis are the various elements in group 7. The

horizontal bars are selected for each element, integrated along the horizontal

axis and a curve fitting code in MATLAB is run to find the location of

the peaks of three Gaussians along a vertical slice. The three Gaussians are

constrained to be of the same width. This process is illustrated in Figure 4.6.

The most important parameters obtained from the Gaussian fit are the
1There is a slight error in this process since, ideally, we should have fitted the data

with the PSF convolved with a rect(·) as done in the previous chapter.
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(a)
(b) 0 mm

(c) 0 mm

Figure 4.6: (a) Shows a typical object in the target. Integration is performed
over the red dotted line (along the X axis) to assign an average value to every
pixel along the Y axis. (b) Resulting integrated signal as a function of pixels
along the Y axis. (c) Shows the resulting gaussian fit obtained.

locations of the peaks of the curves which will help us obtain the width

of each rectangle using the symmetrical nature of the three rectangles in

the target. Its important to note that we are not using the width of the

Gaussian to determine the size of the rectangles since doing so results in an

underestimated value.

The graph in Figure 4.7 shows the results obtained after analyzing the

magnification of all six elements in group 7 of the 1951 USAF target. The

red curve shows the average magnification of the six objects for every value of
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Figure 4.7: Results obtained for the magnification for every element in Group
7. The sizes of the object are known while the sizes of the images are com-
puted by using Gaussian curve fitting analysis. The average magnification is
shown as well as the standard deviation in the computed value of M.

shift (in the imaging plane) and the black dotted line shows the uncertainty

bounding the calculation.
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Appendix A

MATLAB code

For an updated copy of the working code along with sample phase profiles

and a detailed overview of wave propagation, please refer to:

https://github.com/KillianRice/SLM-code

A.1 Generating phase

profiles

A.1.1 Basic Functions

1 function [ x,n ] =

unitstep_dt ( n1 ,n0 ,n2 )

2 % UNITSTEP_DT Summary of

this function goes here

3 % Detailed explanation

goes here

4 n = n1:n2; %the time

vector

5 n0 = find(n == n0); %

finds the index of the

step starting point

6 x = zeros (1, length (n));

7 x(n0:end) = 1;

8 end

1 function [ y,ny ] = shift( x,

nx ,n0 )

2 %SHIFT Summary of this
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function goes here

3 % y[n] = x[n-n0]

4 ny = nx + n0;

5 y = x;

6 end

1 function [ y,ny ] = fold( x,

nx )

2 %FOLD Summary of this

function goes here

3 % Detailed explanation

goes here

4 ny = fliplr (-nx);

5 y = fliplr (x);

6

7 end

A.1.2 Grating profile

and 3D translation

1 %% The purpose of this piece

of code is to generate a

phase profile using prism

and lens phase (in the

image plane).

2 close all;

3 clear all;

4 clc;

5

6 %% System Parameters

7 w_beam = 0.535e -3; % beam

waist of the generated

mode

8 lambda = 532e -9; %

illumination wavelength

9 k = 2*pi/ lambda ; % Wave

number

10 dx = 12.5e -6; %

Pixel Pitch of Hamamatsu

SLM (X13138 -04) aka

sampling freq

11 D = pwd; %

Working Directory of this

file

12 f = 1000e -3; % focal

length : 1000 mm lens

13

14 %% Options

15 saveFile = 1; % options are:

’1’ or ’0’

16

17 %% Creating a 2-D Mesh

18 Ncols = 1272;

19 Nrows = 1024;

20
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21 xx = 1: Ncols;

22 yy = 1: Nrows;

23 [x,y] = meshgrid (xx ,yy);

24

25

26 %% Grating profile

27 % (must be even number for

periodicity in discrete

time)

28 T_x = 50; %

period of the grating in

terms of pixels X axis

29 T_y = 50;

% period of the grating in

terms of pixels Y axis

30

31 [n_x ,Sp_x] = my_square (Ncols ,

T_x);

32 [n_y ,Sp_y] = my_square (Nrows ,

T_y);

33

34 % Uncomment to add another

frequency grating

35 % (must be even number for

periodicity in discrete

time)

36 Tx_highfreq = 100;

% period of the grating

in terms of pixels in X

axis

37 Ty_highfreq = 100; %

period of the grating in

terms of pixels in Y axis

38 [n_x , Spx_highfreq ] =

my_square (Ncols ,

Tx_highfreq );

39 [n_y , Spy_highfreq ] =

my_square (Ncols ,

Ty_highfreq );

40 Ax_highfreq = 0;

41 Ay_highfreq = 0;

42 Spx_highfreq = Spx_highfreq *

Ax_highfreq ;

43 Spy_highfreq = Spy_highfreq *

Ay_highfreq ;

44

45 % Amplitude (remember , max

value is pi)

46 A_x = pi;

47 A_y = 0;

48 Sp_x = Sp_x * A_x;

49 Sp_y = Sp_y * A_y;

50

51 %% Generating Phase Patterns
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( all phase is in range

[0,2 pi) )

52

53 % Grating profile

54 Phi_grating_x = zeros

(1024 ,1272) ;

55 Phi_grating_highfreq_x = zeros

(1024 ,1272) ;

56 Phi_grating_y = zeros

(1024 ,1272) ;

57 Phi_grating_highfreq_y =

zeros (1024 ,1272) ;

58

59 % multiplying the square wave

with the matrix to create

a matrix with a

60 % square wave

61 for iter_col = 1:1272

62 for iter_row = 1:1024

63 Phi_grating_x (

iter_row , iter_col ) = Sp_x(

iter_col ); %high

freq x

64

Phi_grating_highfreq_x (

iter_row , iter_col ) =

Spx_highfreq ( iter_col ); %

low freq x

65 end

66 end

67 for iter_row = 1:1024

68 for iter_col = 1:1272

69 Phi_grating_y (

iter_row , iter_col ) = Sp_y(

iter_row ); % high freq y

70

Phi_grating_highfreq_y (

iter_row , iter_col ) =

Spy_highfreq ( iter_col ); %

low freq y

71 end

72 end

73

74 % Adding phase profiles

moduli 2 pi

75 Phi_grating = mod(

Phi_grating_x +

Phi_grating_y +

Phi_grating_highfreq_x +

Phi_grating_highfreq_y ,2*

pi);

76 figure (’Name ’,’Grating Phase

Profile ’,’NumberTitle ’,’

off ’);
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77 imshow ( Phi_grating ,[0 2*pi]);

78 colorbar ;

79

80 % Shift in longitudinal

direction

81 Phi_lens = mod(-k*(dx) ^2/(2* f

)*((x-Ncols /2) .^2+(y-Nrows

/2) .^2) ,2*pi);

82 figure (’Name ’,’Fresnel -Lens

Phase Profile ( ColorMap )’,

’NumberTitle ’,’off ’);

83 imshow (Phi_lens ,[0 ,2* pi]);

84 colorbar ;

85

86 % Shift in the transverse

direction ( blazed grating

or prism phase)

87 a = 1e -3;

88 Phi_prism = mod(-a*k*x*dx ,2*

pi);

89 figure (’Name ’,’Prism Phase

Profile ( ColorMap )’,’

NumberTitle ’,’off ’);

90 imshow (Phi_prism ,[0 ,2* pi]);

91

92

93 % Sinusoidal Phase Grating

94

95 c = 2*pi; %

contrast

96 period_px = 100; %

period in terms of pixels

97 f_0 = 1/( dx* period_px ); %

spatial frequency of the

grating

98 phi_sin = c/2 * sin (2* pi*f_0*

x*dx)+c/2;

99 figure (’Name ’,’Sinusoidal

grating Phase Profile (

ColorMap )’,’NumberTitle ’,’

off ’);

100 imagesc ( phi_sin /pi);

101 colormap gray;

102 h = colorbar ;

103 ylabel (h,’\phi (units of \pi)

’);

104 axis off;

105

106

107 %% Final Kinoform : (for

computation )

108 % Note: All computation is

done in double precision .

This is important . If
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109 % I do the computation in 8

bit numbers , significant

errors are introduced .

110 % Results were compared .

111 Phi_total = mod( Phi_prism +

Phi_lens + Phi_grating +

phi_sin ,2* pi);

112 figure (’Name ’,’Total Phase

Total_Phase_Profile_computation

’,’NumberTitle ’,’off ’);

113 imshow (Phi_total ,[0 ,2* pi]);

114

115 Phi_total = 255/(2* pi) *

Phi_total ; %

Converting from [0,2pi] to

[0 ,255]

116

117 %% Final kinoform : (for

displaying onto SLM)

118 % Wavefront Correction :

119 S = fullfile (D,’Kinoforms ’,’

CAL_LSH0802080_532nm .bmp ’)

;

120 wvf_cor_532 = imread (S);

121 wvf_cor_532 = double (

wvf_cor_532 );

122 Phi_slm = mod( Phi_total +

wvf_cor_532 ,256);

123 % Note: According to the

Inspection sheet of the

SLM. For 532 nm , at signal

210,

124 % we get 2 pi phase

modulation . Thats how the

SLM twisted nematic

crystals

125 % are operating at 532 nm at

room temperature .

126 Phi_slm = Phi_slm *210/255;

127 % Appending zeros ( because

SLM ignores the last 8

columns )

128 Z = zeros (1024 ,8);

129 Phi_slm = cat (2, Phi_slm ,Z);

130 figure (’Name ’,’

Total_Phase_Profile_SLM ’,’

NumberTitle ’,’off ’);

131 imshow (Phi_slm ,[0 255]);

132

133 %% Saving File (using 8-bit

numerics )

134

135 % Saving file

136 if saveFile == 1
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137 Phi_slm = uint8( Phi_slm );

138 Phi_total = uint8( Phi_total

);

139 imwrite (Phi_slm ,’

Total_Phase_Profile_SLM .

bmp ’,’bmp ’);

140 imwrite (Phi_total ,’

Total_Phase_Profile_computation

.bmp ’,’bmp ’);

141 end

A.1.3 Damman Grating

I present the code for two optimized

Damman grating profiles to generate

8 and 13 equal intensity spots in 1D.

The phase profile is then extended to

2D to generate 64 and 169 equal in-

tensity spots, respectively.

1 % Binary phase grating with

translational symmetry

producing odd number of

2 %spots: 13

3 clear all;

4 close all;

5

6 N = 2048; %Size of image

will still be 1024 x 1272

7 x_axis = 1:N;

8 T = 256;

9 %% Transition points obtained

after optimization

10 x_n = [0.1289 0.3233 0.5862

0.6139 0.7290 0.7919

0.9074]; % transitions

11 x_n_T = round(x_n*T) + 1;

% rounded off to

integer

12 phi_n = [0,pi ,0,pi ,0,pi ,0,pi

];

13 n = 1:T;

14

15 % 1st

16 [y1 ,n] = unitstep_dt (n(1) ,1,n

(end));

17 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (1) +1,n(end));

18 F0 = phi_n (1) *(y1 -y2);

19

20 % 2nd

21 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (1) ,n(end));
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22 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (2) ,n(end));

23 F1 = phi_n (2) *(y1 -y2);

24

25 % 3rd

26 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (2) ,n(end));

27 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (3) ,n(end));

28 F2 = phi_n (3) *(y1 -y2);

29

30 % 4th

31 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (3) ,n(end));

32 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (4) ,n(end));

33 F3 = phi_n (4) *(y1 -y2);

34

35 % 5th

36 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (4) ,n(end));

37 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (5) ,n(end));

38 F4 = phi_n (5) *(y1 -y2);

39

40 % 6th

41 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (5) ,n(end));

42 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (6) ,n(end));

43 F5 = phi_n (6) *(y1 -y2);

44

45 % 7th

46 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (6) ,n(end));

47 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (7) ,n(end));

48 F6 = phi_n (7) *(y1 -y2);

49

50 % 8th

51 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (7) ,n(end));

52 F7 = phi_n (8)*y1;

53 %% Finaly phase profile

54 F = F0 + F1 + F2 + F3+ F4+ F5

+F6+F7;

55 figure (’Name ’,’Single period ’

,’NumberTitle ’,’off ’);

56 plot(n/T,F/pi);

57 ylabel (’\phi (units of \pi)’)

;

58 axis ([0 inf -0.5 1.5]);

59
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60 rep = N/T;

% Number of repitions

61 func = repmat (F,1, rep);

% Repeating one period

62

63 figure (’Name ’,’Damman Grating

Phase Profile (1D)’,’

NumberTitle ’,’off ’);

64 plot(x_axis ,func/pi);

65 axis ([0 N -0.5 1.5]);

66 xlabel (’Pixels ’);

67 ylabel (’\phi (units of \pi)’)

;

68 clearvars -except func N

x_axis

69

70 %% extending to 2D

71

72 for iter_col = 1:1272

73 for iter_row = 1:1024

74 Phi_x(iter_row ,

iter_col ) = func( iter_col )

; %high freq

75 end

76 end

77 for iter_row = 1:1024

78 for iter_col = 1:1272

79 Phi_y(iter_row ,

iter_col ) = func( iter_row )

;

80 end

81 end

82 figure (’Name ’,’Damman Grating

Phase Profile (2D)’,’

NumberTitle ’,’off ’);

83 Phi = mod(Phi_x+Phi_y ,2* pi);

84 imagesc (Phi/pi ,[0 2]);

85 colormap gray;

86 h = colorbar ;

87 ylabel (h,’\phi (units of \pi)

’);

88 axis off;

89 %% Saving the 2D file as .bmp

(8 bit)

90

91 Phi = 255/(2* pi) * Phi;

% Converting from [0,2pi

] to [0 ,255]

92 Phi = uint8(Phi);

93 imwrite (Phi ,’

Dammann_2D_phase_13 .bmp ’,’

bmp ’);

1 % Binary phase grating with

translational symmetry
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producing even number of

2 %spots: 8

3 close all;

4 clear all;

5

6 N = 2048; %Size of image

will still be 1024 x 1272

7 x_axis = 1:N;

8 T = 512;

9 %% Transition points obtained

after optimization

10 x_n =

[0.1812 ,0.2956 ,0.3282 ,0.4392 ,

0.5000 ,0.6812 ,0.7956 ,0.8282 ,0.9392];

% transitions

11 x_n_T = round(x_n*T) + 1;

% rounded off to

integer

12 phi_n = [0 pi 0 pi 0 pi 0 pi

0 pi];

13 n = 1:T;

14

15 % 1st

16 [y1 ,n] = unitstep_dt (n(1) ,1,n

(end));

17 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (1) +1,n(end));

18 F0 = phi_n (1) *(y1 -y2);

19

20 % 2nd

21 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (1) ,n(end));

22 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (2) ,n(end));

23 F1 = phi_n (2) *(y1 -y2);

24

25 % 3rd

26 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (2) ,n(end));

27 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (3) ,n(end));

28 F2 = phi_n (3) *(y1 -y2);

29

30 % 4th

31 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (3) ,n(end));

32 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (4) ,n(end));

33 F3 = phi_n (4) *(y1 -y2);

34

35 % 5th

36 [y1 ,n] = unitstep_dt (n(1) ,
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x_n_T (4) ,n(end));

37 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (5) ,n(end));

38 F4 = phi_n (5) *(y1 -y2);

39

40 % 6th

41 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (5) ,n(end));

42 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (6) ,n(end));

43 F5 = phi_n (6) *(y1 -y2);

44

45 % 7th

46 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (6) ,n(end));

47 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (7) ,n(end));

48 F6 = phi_n (7) *(y1 -y2);

49

50 % 8th

51 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (7) ,n(end));

52 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (8) ,n(end));

53 F7 = phi_n (8) *(y1 -y2);

54

55 % 9th

56 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (8) ,n(end));

57 [y2 ,n] = unitstep_dt (n(1) ,

x_n_T (9) ,n(end));

58 F8 = phi_n (9) *(y1 -y2);

59

60 % 10th

61 [y1 ,n] = unitstep_dt (n(1) ,

x_n_T (9) ,n(end));

62 F9 = phi_n (10)*y1;

63 %% Finaly phase profile

64 F = F0 + F1 + F2 + F3+ F4+ F5

+F6+F7+F8+F9;

65 figure (’Name ’,’Single period ’

,’NumberTitle ’,’off ’);

66 plot(n/T,F/pi);

67 ylabel (’\phi (units of \pi)’)

;

68 axis ([0 inf -0.5 1.5]);

69

70 rep = N/T;

% Number of repitions

71 func = repmat (F,1, rep);

% Repeating one period

72

73 figure (’Name ’,’Damman Grating

Phase Profile (1D)’,’
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NumberTitle ’,’off ’);

74 plot(x_axis ,func/pi);

75 axis ([0 N -0.5 1.5]);

76 xlabel (’Pixels ’);

77 ylabel (’\phi (units of \pi)’)

;

78 clearvars -except func N

x_axis

79 %% extending to 2D

80 for iter_col = 1:1272

81 for iter_row = 1:1024

82 Phi_x(iter_row ,

iter_col ) = func( iter_col )

; %high freq

83 end

84 end

85 for iter_row = 1:1024

86 for iter_col = 1:1272

87 Phi_y(iter_row ,

iter_col ) = func( iter_row )

;

88 end

89 end

90

91 figure (’Name ’,’Damman Grating

Phase Profile (2D)’,’

NumberTitle ’,’off ’);

92 Phi = mod(Phi_x+Phi_y ,2* pi);

93 imagesc (Phi/pi ,[0 2]);

94 colormap gray;

95 h = colorbar ;

96 ylabel (h,’\phi (units of \pi)

’);

97 axis off;

98 %% Saving the 2D file as .bmp

(8 bit)

99 Phi = 255/(2* pi) * Phi;

% Converting from [0,2pi

] to [0 ,255]

100 Phi = uint8(Phi);

101 imwrite (Phi ,’

Dammann_2D_phase_8 .bmp ’,’

bmp ’);

A.2 Wave propaga-

tion

Wave propagation is performed by

implementing the Fresnel Diffrac-

tion integrals as a Fourier trans-

form. The first two subsections show

the computation done in rectangu-
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lar coordinates for the most gen-

eral optical beam profiles. If a

beam is cicrularly symmetric, we

can convert to polar coordinates

and reduce the 2D fourier trans-

form to a 1D Hankel transform

which is an integral over the ra-

dial coordinate only. This approach

is particularly useful for gaussian

beams or other circulary symmetric

beams like the well-known Laguerre-

Gaussian beam modes.

A.2.1 1D

1 close all;

2 clear all;

3 clc;

4

5 %% Setting up system

parameters

6

7 s_factor = 1; % Set

this to 1 for default (

actual ) values . Set this

to larger than 1 for

scaling the fft2. This ...

8 % ... will

introduce increasing

errors as you increase its

value largr.

9 Lambda = 532e -9; %

Wavelength

10 k = 2*pi/ Lambda ; %Wave

number

11 f_fourier = (400) *1e -3; %

Focal length of the

Fourier Transforming Lens

12 dx = s_factor *12.5e -6; %

spatial period of sampling

( pixels )

13 F_s = 1/dx; % spatial freq

of sampling ( pixels )

14 N = 1024;

15 x = [-N/2:1:N/2 -1];

16

17

18 %% Input phase profile here:

( example of sinusoidal

grating shown)

19 % other 1D phase profiles of

length 1024 can be
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included

20 c = 2*pi; %

contrast

21 period_px = 50; % period

in terms of pixels

22 f_0 = 1/( dx* period_px ); %

spatial frequency of the

grating

23 phi_sin = c/2 * sin (2* pi*f_0*

x*dx)+c/2;

24 figure (’Name ’,’Sinusoidal

grating Phase Profile (

ColorMap )’,’NumberTitle ’,’

off ’);

25 imagesc ( phi_sin /pi);

26 colormap gray;

27 h = colorbar ;

28 ylabel (h,’\phi (units of \pi)

’);

29 axis off;

30

31

32 xx = dx*(-N/2:1:N/2 -1); % The

x axis

33 x = exp(i* phi_sin ); % The

electric field

34

35 % Plotting the Phase profile

in 1D

36 figure (’NumberTitle ’,’off ’,’

Name ’,’1D Computation :

Fourier Transform ’);

37 s(1) = subplot (2 ,2 ,1);

38 plot(xx ,angle(x)/pi);

39 ylabel (’Phase \Phi (units of

\pi)’);

40 xlabel (’X axis ’);

41 s(2) = subplot (2 ,2 ,2);

42 plot(xx ,abs(x));

43 ylabel (’Amplitude ’);

44 xlabel (’X axis ’);

45 title(s(1) ,’Phase profile SLM

plane ’);

46 title(s(2) ,’Amplitude profile

SLM plane ( normalized )’);

47 %% Computing the Fresnel

Diffraction Integral

48 FFT = fft(x,N);

49 y = fftshift (FFT);

50

51 % Setting the axis

52 w_freq = linspace (-pi ,pi -(2*

pi)/N,N);
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53 freq_proper = F_s* w_freq /(2*

pi); % Spatial

frequency

54 clear x;

55 x = freq_proper * Lambda *

f_fourier ; %

converting from spatial

frequency to coordinates

56

57 % Plotting the Image plane

Field

58 s(4) = subplot (2 ,2 ,4);

59 plot( s_factor *x/(1e -3) ,abs(y)

);

60 ylabel (’Amplitude ’);

61 xlabel (’X axis (mm)’);

62 s(3) = subplot (2 ,2 ,3);

63 plot( s_factor *x/(1e -3) ,angle(

y));

64 ylabel (’Phase \Phi (units of

\pi)’);

65 xlabel (’X axis (mm)’);

66 title(s(3) ,’Phase profile

Image plane ’);

67 title(s(4) ,’Amplitude profile

Image plane ’);

A.2.2 2D

1 % This piece of code can take

a phase profile and give

you the resulting

2 % electric field in the

fourier plane.

3

4 close all;

5 clear all;

6 clc;

7 %% Setting up system

parameters

8

9 s_factor = 1; % Set

this to 1 for default (

actual ) values . Set this

to larger than 1 for

scaling the fft2. This ...

10 % ... will

introduce increasing

errors as you increase its

value largr.

11

12 D = pwd; %

Working Directory of this

file

13 Lambda = 532e -9; %
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Wavelength

14 k = 2*pi/ Lambda ; %Wave

number

15 f_fourier = 77e -3; %Focal

length of the Fourier

Transforming Lens

16 T_s = s_factor *12.5e -6; %

spatial period of sampling

( pixels )

17 F_s = 1/ T_s; % spatial freq

of sampling ( pixels )

18

19 %% Reading image file and

converting to proper phase

scaling

20

21 S = fullfile (D,’

Dammann_2D_phase_8 .bmp ’);

%input the phase profile

22 Phi = imread (S);

23 % Phi = Phi (: ,: ,1);

24 Phi = 2*pi /255 * double (Phi);

25 Phi = Phi (: ,1:1272);

26 figure (’NumberTitle ’,’off ’,’

Name ’,’2D Computation :

Fourier Transform ’);

27 s(2) = subplot (2 ,2 ,2);

28 imshow (Phi ,[0 2*pi]);

29 title(s(2) ,’Input Phase

profile ’);

30

31 %% Generating 2D Eletric

Field

32 Ncols = 1272; % X axis

33 Nrows = 1024; % Y axis

34

35 xx = T_s *(- Ncols /2:1: Ncols

/2 -1);

36 yy = T_s *(- Nrows /2:1: Nrows

/2 -1);

37

38 u_amp = 1;

39 u = exp(i*Phi);

40

41 s(1) = subplot (2 ,2 ,1);

42 imagesc (xx ,yy ,u_amp);

43 xlabel (’X_{SLM} axis ’);

44 ylabel (’Y_{SLM} axis ’);

45 title(s(1) ,’Amplitude profile

SLM plane ( normalized )’);

46

47

48 %% The Fourier transform (2D)

49 % The electric field in the
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Fourier plane

50 v = fft2(u);

51 v = fftshift (v);

52

53 % Axes

54 w_freq_cols = linspace (-pi ,pi

-(2* pi)/Ncols ,Ncols);

55 freq_proper_cols = F_s*

w_freq_cols /(2* pi);

% Spatial frequency

56 x_cols = freq_proper_cols *

Lambda * f_fourier ; %

converting from spatial

frequency to coordinates

57

58 w_freq_rows = linspace (-pi ,pi

-(2* pi)/Nrows ,Nrows);

59 freq_proper_rows = F_s*

w_freq_rows /(2* pi);

% Spatial frequency

60 x_rows = freq_proper_rows *

Lambda * f_fourier ; %

converting from spatial

frequency to coordinates

61

62 % Display image

63

64 s(3) = subplot (2 ,2 ,3);

65 imagesc ( s_factor * x_cols /(1e

-3) ,s_factor * x_rows /(1e -3)

,abs(v).^2);

66 title(s(3) ,’Amplitude profile

Image plane ’);

67 xlabel (’X_{image} (mm)’);

68 ylabel (’Y_{image} (mm)’);

A.2.3 Circular Symme-

try

Please refer to:

https://github.com/KillianRice/SLM-

code

A.3 GS Algorithm

Please refer to:

https://github.com/KillianRice/SLM-

code
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