
Appendix A

Frequency doubling 922 nm

A.1 Non-linear crystal

Potassium Niobate (KNbO3), which has a high effective non-linear coefficient,
is used for second-harmonic generation to blue wavelengths. Here, 922 nm light
is frequency-doubled to 461 nm to address the principal transition in strontium
for laser cooling. The crystal dimension along the length of the home-made
resonator is 5 mm and has a plane reflecting surface. The other mirror, acting
as the input coupler, has a radius of curvature (ROC) of 25 mm (see Fig. A.2).
Below is a cartoon of the doubling cavity with relevant components 1.
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Figure A.1: Layout of the components for doubling 922 nm light from a taper-
ered amplifier (TA), seeded by the 922 nm primary laser which is frequency-
locked to strontium atoms.

A.2 Resonator

One of the important aspects for efficient conversion is the intensity of light
within the doubling crystal. Hence, the incoming 922 nm light needs to be mode-

1In the near future we will be replacing the TA light with light from a long fiber sourced
from the primary laser in the plasma lab.
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matched to the fundamental spatial mode of the cavity (also called TEM00)
which, maximises the intensity of 922 nm light on the non-linear crystal. Typi-
cally, this amounts to matching the size and position of the waist of the incoming
beam to the natural waist size and position of the fundamental cavity mode.
Worse alignment leads to coupling to the non-fundamental (higher order) spa-
tial modes, thereby reducing doubling efficiency. Matrix algebra, as described
in [1], can be used to calculate the natural waist size and waist position of such
a resonator. The elements of the matrix are dependent on various parameters
of the resnator such as its length, refractive index of the media, and the radius
of curvature of the mirrors that form the cavity.

A.2.1 Expression for the fundamental spatial mode

The wave equation for light, parameterized by x, y, z, t, where U(x, y, z, t) denote
the instantaneous field amplitude, is given by:

∇2U =
1

c2
∂2

∂t2
U (A.1)

For a monochromatic radiation, as is the case for our laser (≤100 MHz linewidth),
the general wave equation simplifies to a scalar wave equation with U(x, y, z; t) =
U(x, y, z)e−iωt. Substituting this into eq. (A.1), we get:

∇2U + k2U = 0, (A.2)

where, k is the magnitude of the wavevector given by the relation k = 2π
λ .

For a cylindrically symmetric beam travelling in the z−direction (we take
this axis to be axis of propagation throughout the report),

U(x, y, z; t) = ψ(x, y, z)e−ikz (A.3)

The scalar wave equation modifies to:

1

r

∂

∂r
r
∂ψ

∂r
− i2k

∂ψ

∂z
= 0 (A.4)

The above equation has a multiple solutions corresponding to different spatial
(transverse) and longitudnal modes (frequency) 2. The simplest spatial mode,
i.e. TEM00, is given by:

ψ(r, z) = e−iP (z)−i kr2

2q(z) (A.5)

where, r2 = x2 + y2. Without loss of generality, P (z) and q(z) are complex
numbers. Let q(z) be written in terms of a real and imaginary parameter, given
by:

1

q(z)
=

1

R(z)
− iλ

πs(z)2
, (A.6)

2One can use Green’s function’s approach to find the solution of the wave equation.
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where, s(z) =
√
s20[1 + ( λz

πs20
)2] is the spot size of the gaussian beam. The waist

size is denoted as s0. R(z) gives the radius of curvature of the wavefront that
intersects the propagation axis at z. P (z) is the complex phase and obeys the
relation,

P ′(z) = − i

q(z)
, (A.7)

where,‘ ′ ’ is the first-order derivative with respect to z.

Physical interpretation of s(z)

The intensity is given by :

I =
1

2
ϵ0c|ψ(r, z)|2 ∝ e−

kr2λ
πs2 (= e

−2r2

s2 ), (A.8)

where, the proportionality relation is obtained by substituting (A.6) in (A.5).
Thus, the spotsize [s(z)] of a gaussian beam is defined as the distance from the
beam axis (at position z) where the intensity drops to 1/e2(≈ 13.5%) of the
maximum value.

Before we go about determining the natural waist size and position of our
cavity, here is a brief review of the ABCD matrix algebra for the transformations
of the complex beam parameter q(z).

Propagation of light through media of different refractive index

From the ABCDmatrix theory[1], the transfer matrix for light travelling through
a medium of length d1 and refractive index n1, is given by:

Tdistance =

(
1 d1/n1

0 1

)
. (A.9)

Therefore, light travelling through two media for different lengths and different
refractive indices has a transfer matrix given by,

Tdistance =

(
1 d1/n1 + d2/n2

0 1

)
. (A.10)

Thus, an effective transfer matrix can be defined where, the light travels through
an effective single media (air) of length d1/n1 + d2/n2.

Propagation of light through lens

The ABCD matrix for light travelling through a lens of focal length f is given
by,

Tlens =

(
1 0

−1/f 1

)
. (A.11)
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Transfer matrix for doubling cavity

For the case of the doubling cavity, the effective ABCD matrix is obtained
by matrix multiplication of the individual transfer matrices. The order of the
multiplication is determined by the order in which the light ray passes through
each of the optical elements.

For a single pass through the cavity, the light beam travels a distance dcry
through the crystal, travels a distance dair in air, reflects from the input coupler,
travels back through air and then ends the cycle by traveling through the crystal
once again.
Let T be the transfer matrix for such a single pass. It is then given by:

[T ]mn = [Tcrystal]ma.[Tair]ab.[Tcoupler]bc.[Tair]cd.[Tcrystal]dn (A.12)

where, ‘.’ represents matrix multiplication. The transformation of beam param-
eter, q(z), is given by:

q2 =
Aq1 +B

Cq1 +D
, (A.13)

where, A ,B ,C ,D are elements of T .
To realize a confocal cavity with stable modes, the beam parameter transfor-

mation should be repeatable for infinite cycles. It suffices to say that the beam
parameter q(z) after a single pass through the elements in the cavity remains
unchanged, i.e., q2 = q1.

A.2.2 Confirming radius of curvature of input coupler

Aaron Saenz and Joshua Hill’s3 theses contain information regarding the pa-
rameters of the 922 nm doubling cavity. The length of the crystal quoted is 5
mm, whose refractive index (n) is 2.28. The radius of curvature of the input
coupler is 25 mm. The focal length for the cavity is f = R/2 = 12.5 mm. The
air medium inside the cavity is around 15 mm. The effective cavity length with
only air is then given by,

d = 5mm/2.28 + 15mm ≈ 17.2mm. (A.14)

However, the input coupler acts as a plano-concave lens for light outside the
cavity whose focal length is −50 mm. The distinction between f(= R/2), which
is used for calculating the natural waist of cavity, and its ‘lens’ focal length,
which is used to calculate the virtual waist for the incoupling light, needs to be
clear to avoid error.

A.2.3 Source of error in [2]

Figure 2.4 of reference [2] shows a cavity which is larger in size than it actually is.
Figure A.3 of this report shows the source of error. This leads to a calculation of
natural waist size and position which is different from the actual natural waist
in the experiment. This calculation is redone in the next section.

3https://ultracold.rice.edu/research.shtml
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Figure A.2: (a) A stock coupler with specifications written on the surface. (b)
and (c) Input coupler for the 922 nm doubling cavity with similar specifications.
From the image we conclude that the radius of curvature is 25 mm. The red
circles point to the significant values (inverted for being a mirror image).

A.2.4 Calculating “natural” and “virtual” waist

Natural waist is defined as the waist of the fundamental mode of the confocal
cavity. The virtual waist is the waist of the beam that is being coupled to the
cavity when viewed without the input coupler. The input coupler acts as a
concave lens of f = −50 mm and shifts the waist position of the coupling beam
towards the crystal.

Natural waist

The ABCD matrix for our cavity after the matrix multiplications is given by a
general expression as shown in Fig. A.4.
Substituting parameters for the cavity, the transfer matrix for our doubling

cavity is:

T =

(
A B
C D

)
=

(
−0.375 0.01074
−80 −0.375

)
. (A.15)
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The length of the 
cavity shown here is  

larger than 
calculated. 

(a)

(b)

Figure A.3: (a) The error in calculation could be from this expression (2.4) in
[2]. (b) The length of the cavity measured from the figure shown (page 21 of
[2]) is larger than what it should be.

All the elements in this matrix have the unit m−1.
The waist size is written in terms of the elements of T as :

s20 =
2λB

π
√
4− (A+D)2

(A.16)

Eq. (A.16) can be used to plot the variation of waist as a function of dair, as
shown in Fig. A.5.
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Figure A.4: Equation borrowed from Clayton Simien’s thesis for the general
expression of the ABCD matrix for a confocal cavity. R1 = R is the radius of
curvature of the input coupler.
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Figure A.5: Waist of the fundamental cavity mode as a function of dair.

Upon simplifying Eq. (A.16), the waist of a confocal cavity can be expressed
as:

s20 =
λ

π

√
d(R− d), (A.17)

where, d is the length of the effective cavity and R is the radius of curvature of
the input coupler (for our case, R = 25 mm). Thus,

s0 =

√
λ
√
d(R− d)/π =

√
922× 10−9 ∗ 11.6/1000/π = 58.5µm (A.18)

Virtual waist

The calculation of the virtual waist entails to propagating the fundamental mode
outside the cavity with the input coupler acting as a plano-concave lens (with
focal length = −50 mm). The waist of the lens-transformed beam is called the
virtual waist. The virtual waist calculated by both the programs is around 42.8
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(a) (b)

Figure A.6: (a) Virtual waist calculated by Jim Aman’s beam propagation
program in Matlab. 0 cm is the position of the input coupler. Solid line is the
actual beam, whereas dotted lines represent extrapolated features. (b) Virtual
waist calculated by SKK’s python notebook. There is good agreement implying
the python code does not have any errors. 0 mm is the position of the input
coupler. (To get a perspective of the effective and actual length of the cavity,
see legend.)

microns and the position of such a waist is about 13.88 mm away from the input
coupling mirror (or 1.12 mm before the front surface of the crystal, as shown in
Fig. A.1).
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