
RICE UNIVERSITY

Refinement of the strontium molecular potential by
numerical computation of bound states

Will Huie

Houston, Texas
April, 2020



Abstract

Refinement of the strontium molecular potential by
numerical computation of bound states

Will Huie

This thesis describes an improved determination of the long-range parameters C6, C8, and

C10 of the strontium ground state molecular potential, which carry particular significance

to ultracold atomic physics. The numerical values of these parameters are determined by

way of a gradient descent fitting algorithm applied to a previous model of the potential and

recent photoassociation-spectroscopy measurements of the binding energies of weakly bound

ro-vibrational states of various strontium-dimer isotopologues. The results presented in later

chapters are found to substantially improve the potential’s description of these states and

others not included in the fitting data set.

Additionally, numerical methods for computing solutions to the time-independent Schrö-

dinger equation governing these bound states of strontium dimers are discussed as the back-

bone of the procedure for fitting the molecular potential parameters to experimental data.

Several methods are described and evaluated with respect to the accuracies of their computed

solutions as well as their runtime efficiencies for a harmonic-potential test case. Further,

the code implementing these methods is also made available to assist with potential future

projects.

Using the improved molecular potential and numerical solving methods, the binding

energy of the least-bound, ν = 62, ℓ = 0 level of the electronic ground state of the 87Sr2

dimer is predicted to be 25.9(9) MHz. The 87Sr isotope is the last of the naturally occurring

strontium isotopes for which the binding energy of this state has not been measured. Hence,

this prediction is expected to assist with future efforts to observe this state and use it for

further ultracold atomic physics experiments.
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1 Introduction

Where analytical solutions to the Schrödinger equation in atomic physics have yet to be

found, numerical computation offers a powerful way to probe and improve theoretical un-

derstandings of interesting properties of quantum mechanical systems. In cases where mea-

surements have yet to be taken, numerical computation can likewise provide predictions to

help guide experiments. For this thesis, numerical methods are applied to the understanding

of ultracold atoms and molecules, the main focus of the Killian lab.

Recent developments in ultracold physics where atoms and molecules are characteris-

tically cooled to temperatures on the order of 1 mK or lower have led to the creation of

ultracold molecules and novel states of matter such as Bose-Einstein condensates and quan-

tum degenerate Fermi gases. The methods of production and properties of these systems

are governed by the scattering properties of their constituent atoms. For example, collisions

between atoms are critical to the efficiency of the evaporative cooling processes used to reach

the lowest temperatures and scattering interactions determine the equilibrium properties of

a Bose-Einstein condensate such as its stability, spatial density, and overall shape [1, 2].

The macroscopic properties of these dilute, cold gases can be entirely derived from two-

body interactions, which themselves are governed by the two-body molecular potentials.

These interactions are particularly sensitive to the long-range van der Waals portion of

the potential. Weakly bound diatomic molecules are also very sensitive to this region, so

examination of the binding energies of these states can provide a great deal of information

that is of interest for ultracold physics.

1.1 Strontium isotopes

Strontium is an alkaline-earth element with four naturally occurring isotopes, 84Sr, 86Sr, 88Sr,

and 87Sr. Of these, the first three are bosonic and have zero nuclear spin while the last is

fermionic with spin I = 9/2, and all of them have a ground-state electron configuration with

a closed valence shell. These collectively make the strontium isotopes appealing candidates
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for many experiments. To give a few examples: each isotope features excited states with long-

lasting lifetimes making them useful to atomic clocks, the 84Sr isotope allows for the creation

of stable Bose-Einstein condensates, and the closed-shell structure means that the nuclear

spin of the 87Sr isotope near-perfectly decouples from electronic spin for the 1S0 and 3P0

states, making the fermionic isotope well-suited to quantum information processing [2]. Thus

much work has been done to characterize these species, especially in the low-temperature

limit.

Over the last few years, measurements have been made of the binding energies of weakly

bound states of the three bosonic isotopes [3–5] by two-photon photoassociation spectroscopy,

whereby a trapped ultracold gas of atoms is illuminated with two laser fields to pair free

atoms in the gas into bound dimers. This is achieved by tuning the laser frequencies such

that one field drives an excitation in a colliding pair of atoms up to a state in the excited

molecular potential, while the other stimulates emission down to one in the ground-state

molecular potential, as shown in fig. 1. Photoassociation is usually detectable as a loss of

atoms from the sample. The difference in laser frequencies corresponding to maximal atom

loss corresponds to the binding energy of the molecular state. The measurements presented

in [3–5] provide the experimental data for the work in this thesis.

The current best model of the molecular potential is from Tiemann [6], in which a func-

tional form of the Sr2 molecular potential was determined by fitting parameters in the form

to the energies of the two weakly bound states of 88Sr2 reported in [5] (those of 86Sr2 and
84Sr2 were not available at the time) along with the energies of nearly 15,645 transitions

from electronic excited states to various ro-vibrational ground states of the 88Sr2, 86Sr88Sr,

and 87Sr88Sr isotopologues measured by Fourier-transform spectroscopy. Though much of

the potential was determined, the data set used was heavily biased towards the lower vi-

brational levels, as shown in fig. 2. The transition energies encompass states up to only the

ν = 60 vibrational level (these molecules reach a physical maximum at ν = 62) with just

18 reaching ν ≥ 58. Since the more deeply bound states of these molecules are not strongly
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Figure 1: The two-photon photoassociation process between two atoms colliding with
energy Efree on a ground state potential. One laser field tuned to frequency ω1

initially excites the pair of atoms up to a state in an excited molecular potential
(in orange) before the other field tuned to ω2 stimulates emission down to a state
in the ground-state potential (blue). The binding energy of the final state is the
difference in laser energies, Eb = h̄|ω2 − ω1|.

affected by the molecular potential at large distances, this means the potential’s long-range

features, which are of interest to ultracold physics, are comparatively poorly determined.

Now that more measurements of the binding energies of weakly bound states of various

strontium dimers have been taken, however, this long-range strontium molecular potential

can be better determined. This thesis employs a straightforward strategy to use the mea-

surements of the 84Sr2 and 86Sr2 binding energies that were unavailable to Tiemann (along

with the 88Sr2 binding energies that were) to improve the potential using Tiemann’s original

formulation as a base. By solving the Schrödinger equation for the potential at vibrational

and rotational quantum numbers corresponding to those measured, the extent to which the

potential is able to describe the measured molecular states can be judged quantitatively and

hence used to refine it as a numerical model. The resulting improved potential can then be

used to generate a prediction of the binding energy of the 87Sr2 dimer’s least-bound state in

order to assist with future experimental efforts.
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Figure 2: Distribution of the 15,645 transition energies used in Tiemann’s analysis
among the various vibrational levels of the 88Sr2, 86Sr88Sr, and 87Sr88Sr isotopo-
logues they belong to. The maximum vibrational level reached in the data set is
ν = 60, while the maximum physically attainable for the isotopologues is ν = 62.
Only 18 or about 0.1% of these data lie within the top five physically possible
levels. Not pictured here are the two additional ν = 62 states measured by pho-
toassociation spectroscopy or the distribution of these transition energies among
various ℓ rotational quantum numbers.

1.2 Thesis overview

In this thesis, a number of numerical techniques are leveraged to calculate the energy levels

of ro-vibrational ground state molecules of various strontium isotopes and the long-range

properties of the underlying molecular potential. Chapter 2 outlines the various numerical

methods included in the tool that was developed and usefulness to this particular project.

Chapter 3 presents the results of applying these methods to adjust selected parameters of

Tiemann’s molecular potential to fit the binding energies of states in strontium dimers.

Finally, chapter 4 will provide concluding remarks along with recommendations for future

work.
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2 Examination of numerical methods

The core of the work done in this thesis lies in the numerical methods used to find the energies

of bound states for the strontium molecular potential. The governing equation considered

here is the time-independent radial Schrödinger equation, written in the form

∂2u

∂r2
= −Q(r)u, Q(r) =

2µ

h̄2

(
E − V (r)

)
− ℓ(ℓ+ 1)

r2
(1)

with µ as the reduced mass of the diatomic molecule, ℓ the rotational quantum number, and

V (r) the spherically symmetric molecular potential following the form shown in appendix A

with zero chosen to be the energy of two atoms separated by a large distance at rest, V (r →

∞) = 0. In numerical calculations, a discrete grid of N radial coordinates ri are defined,

and the values of the wavefunction ui = u(ri) are computed usually by means of a linearized,

discretized form of eq. 1. While a method to solve for ui may choose a non-uniform spacing

between coordinates, the methods used in this work require ri taken to be spaced by a

constant distance δr, formally defined as

ri = r0 + iδr, i = 0, 1, . . . , N − 1 (2)

for some chosen left-hand boundary r0.

Careful considerations must be made when choosing the values of ri, due to two main

features of the Schrödinger equation. The first is that for energies that are large compared to

local features of the potential – regions were Q(r) is large and positive – the wavefunction so-

lutions oscillate over small length scales. To properly resolve these oscillations, a sufficiently

small grid spacing must be used. The wavelength of a solution to eq. 1 can be considered

as a function of the radial coordinate, λ(r) = 2π/
√

Q(r) when Q(r) is positive, and reaches

a minimum value when Q(r) reaches a maximum. Since all bound states for the strontium

molecular potential lie below zero energy, the minimum value attained by λ(r) for E = 0

gives a lower bound on the length scale of oscillations in the wavefunction of any bound state
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for the potential. Thus for this thesis the grid spacing δr is chosen to be one fifteenth of this

value,

δr =
1

15
× 2π√

2µ|V0|/h̄2
(3)

where the maximum value of Q(r) in the E = 0 case has been simplified to 2µ|V0|/h̄2, the

absolute value of the potential minimum scaled by 2µ/h̄2.

The second feature that must be considered is the exponential decay of wavefunction

solutions that occurs in classically forbidden regions and has characteristic length q(r) =

1/
√
|Q(r)|. In the case where Q(r) in these regions is small and negative, q(r) is large, giving

the corresponding wavefunction large extensions beyond the classical turning point. But

when calculating a wavefunction solution, the grid over which the wavefunction is calculated

is necessarily finite, and the usual boundary conditions imposing u → 0 as r → ∞ must

be replaced with zero-value conditions at the edges of the grid. Thus the boundaries of the

radial coordinate grid must be chosen far enough into classically forbidden regions that the

zero-value condition is sufficiently similar to the limiting u(r → ±∞) = 0 one. For the

strontium molecular potential, the above case occurs in the outer forbidden region for states

bound at energies close to E = 0. In this region, V (r) → 0 in the limit as r → ∞, so to

minimize the computational load, q(r) is approximated as a constant value q0 using V (r) = 0

for a given energy, and the length rext of the coordinate grid’s extension into the forbidden

region is chosen to be seven times that value,

rext = 7q0 = 7× 1√
2µ|E|/h̄2

(4)

such that the wavefunction is allowed to decay to approximately exp(−7) ≈ 0.1% of its value

at the outer turning point. This problem is strongly mitigated for the inner forbidden region

due to the rapid divergence of the molecular potential as r → 0, where Q(r) is negative

and large. In this region, the exponential decay of the wavefunction occurs over a small

characteristic length, and is found to be suitably modeled by setting the left-hand boundary

of the coordinate grid to be r0 = 1 Å.
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2.1 Description of methods

While there exist many general methods to numerically solve second-order equations, Nu-

merov’s method [7] is specialized to equations of the form of eq. 1, and is found to produce

accurate solutions. Over a grid of radial coordinates following eq. 2, Numerov’s method

relates the values of the wavefunction ui by the discretization

(
1 +

δr2

12
Qi+1

)
ui+1 = 2

(
1− 5δr2

12
Qi

)
ui −

(
1 +

δr2

12
Qi−1

)
ui−1 (5)

where Qi = Q(xi). This second-order recurrence relation is quite accurate, featuring an

error term of size O(δr6). Given appropriate left-hand boundary conditions for the value of

the wavefunction and its first derivative captured in the values of u0 and u1, a straightfor-

ward application of eq. 5 to a naive shooting method chooses a value for the energy E and

iteratively calculates successive values of ui using the relation until the other end of the co-

ordinate grid is reached in a process known as numerical integration. If, after the integration

has terminated, the values of the wavefunction go to zero at the right-hand boundary, then a

solution to the Schrödinger equation is detected. If not, a new value for E is generated, and

the process repeats. A critical problem with this approach, however, is that in classically

forbidden regions where Qi is negative, the integration couples easily into the exponential

growth term of the general solution to the Schrödinger equation, often leading to numerical

overflow in the computation and ultimately making solutions difficult to detect.

This section provides descriptions of three methods to solve eq. 1 derived from Numerov’s

method that circumvent the numerical overflow problem described above through two dis-

tinct means. The first of the methods is the matrix Numerov method [8], while the latter

two are variations of Johnson’s log-derivative method [9]. All three methods are evaluated in

section 2.2 with respect to accuracy and efficiency when applied to a harmonic potential test

case. The method of energy-wavefunction coupling [10] was also considered for this thesis,

but ultimately discarded for reasons detailed in appendix B. All methods are implemented

in an open-source Python library detailed in appendix C.
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2.1.1 Matrix Numerov method

The matrix Numerov method [8] is computationally the simplest of the three methods dis-

cussed in this section. This method avoids numerical overflow by treating eq. 5 holistically

as a set of N coupled linear equations. Rearranging the terms of the equation gives a N ×N

matrix eigenvalue equation

Hu =

[
− h̄2

2µ
B−1A+ V

]
u = Eu (6)

with u being the column vector of ui wavefunction values, and the matrices A, B, and V

defined as

A = (I−1 − 2I0 + I1)/δr2 (7)

B = (I−1 − 10I0 + I1)/12 (8)

Vij =

(
V (ri) +

ℓ(ℓ+ 1)h̄2

2µr2i

)
δij (9)

Where Ik denotes the matrix of size N ×N with elements equal to one on the k-th diagonal

(k = 0 being the main diagonal) and zero elsewhere. This approach is equivalent to expand-

ing the state |u⟩ on a basis of N Dirac delta function states |ri⟩ that have wavefunctions

⟨r|ri⟩ = δ(r−ri) where the kinetic energy terms of each basis state as well as nearest-neighbor

interactions between them are defined by Numerov’s discretization. The amplitude of the

|ri⟩ basis state is then the amplitude of the wavefunction of |u⟩ at the corresponding grid

point, ⟨ri|u⟩ = u(ri).

The choice of a finite, discrete basis of |ri⟩ states approximates the actual infinite, contin-

uous one representing real space and implicitly assumes that the value of the wavefunction

is zero everywhere outside the coordinate grid. This approximation is good to the extent

that u(ri) does not change drastically between adjacent grid points and exponentially decays

sufficiently close to zero at the grid boundaries. These conditions hold for δr small enough
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with r0 and rN−1 placed far enough into classically forbidden regions, and are equivalent to

those detailed in the previous section.

Equation 6 can then be solved by calling one of the many existing numerical linear algebra

libraries to calculate the N eigenvalues and eigenvectors of H that compose a superset of

all bound-state solutions to the Schrödinger equation for the given potential. Generally,

the first n eigenvalues and associated eigenvectors of lowest energy will correspond to the

n physically realizable vibrational levels of the potential, while the rest can be discarded.

If n is known, then the Schrödinger equation can be completely solved for the potential

after a small additional step to sort and select solutions returned by the linear algebra

routine. Additionally, many linear algebra libraries also feature routines that are optimized

to compute only the eigenvalues of H, which saves a small bit of computing power if the

wavefunction solutions are not needed.

The advantages of the matrix Numerov method lie in the straightforward process by

which solutions to eq. 1 are found, and in the fact that all solutions can be found without

any information about the system beyond a definition of the potential. Important downsides

to the method arise from the need to construct and analyze a N × N matrix to find these

solutions. This can be inefficient with respect to both runtime and memory in cases where N

is large, with a time complexity of roughly O(N3). While the solutions found by this method

are accurate, as will be shown in section 2.2, this can be bad for applications where eq. 1

must be solved repeatedly, as is required for the strontium molecular potential refinement

detailed in chapter 3. One other significant issue comes from the fact that the length scale

over which wavefunctions oscillate decreases with increasing energy. As discussed for eq. 3,

the coordinate grid over which solutions are calculated only needs to be dense enough to

resolve these oscillations, meaning that grids for lower-energy solutions can be less dense

than those for higher-energy solutions without significant loss to accuracy. But when eq. 5 is

reformulated as a matrix eigenvalue equation, all solutions are necessarily calculated over the

same grid, thus inefficiently allocating computing time. If only a small number of high-energy
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solutions to eq. 1 are needed, then this entails adding substantial, unnecessary increases to

total runtime.

2.1.2 Two-sided shooting and renormalized Numerov methods

In contrast to the matrix Numerov method, the two-sided shooting method and the renor-

malized Numerov method make use of a reformulation of the Numerov discretization, due to

Johnson [9], that gives a specialized numerical integration scheme designed to avoid the nu-

merical overflow problem described above. In this reformulation, the quantities Ri = R(ri)

and R̃i = R̃(ri) at each radial coordinate are defined as

Ri =

(
1 + δr2

12
Qi+1)ui+1(

1 + δr2

12
Qi)ui

(10)

R̃i =

(
1 + δr2

12
Qi)ui(

1 + δr2

12
Qi−1)ui−1

(11)

Following a series of transformations performed on eq. 5 using these definitions, recurrence

relations for both quantities can also be derived,

Ri =
2− 10 δr2

12
Qi

1 + δr2

12
Qi

− 1

Ri−1

(12)

R̃i =
2− 10 δr2

12
Qi

1 + δr2

12
Qi

− 1

R̃i+1

(13)

Ri and R̃i are useful to calculate instead of ui because, being defined as ratios between

successive values of the wavefunction, they do not grow exponentially in classically forbidden

regions and can be integrated from either the left or right boundaries of the coordinate grid

using eq. 12 or eq. 13, respectively. Once R or R̃ has been calculated, the values of the

‘true’ wavefunction ui can be calculated up to a normalization factor using the definition

of the counterpart quantity, either eq. 11 or eq. 10. Considering this, R and R̃ are, in a

sense, renormalized wavefunctions. When ui is calculated in this way, no quantities are ever

allowed to grow exponentially, and hence no risk of numerical overflow is ever encountered.

In practice, R and R̃ are integrated from opposite sides of the coordinate grid until the
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integrations meet at a point rM inside a classically allowed region, defined as the element of

the radial coordinate grid of least value that is greater than the location of the wavefunction

peak closest to the right-hand classically forbidden region (note that the Schrödinger equation

forbid this peak from actually lying inside the forbidden region). The grid point rM is

mathematically characterized as the first coordinate encountered by the integration of R̃ for

which R̃i ≤ 1. If the energy of the wavefunctions is an eigenvalue of eq. 1 then the true

wavefunctions calculated from the two integrations will be such that they can be matched

smoothly at rM .

To find the energies for which this will occur, the log derivative method – also due to

Johnson [9] – is employed. In this method, the log derivative of the wavefunctions y(r) =

d log u/dr = u′(r)/u(r) at the matching point rM of the left- and right-integrations (yl and

yr) are calculated. This quantity is useful to calculate because it captures both the value

and the slope of the wavefunction as well as the relative sign between the two in a way that

is independent of the wavefunction’s normalization. With this definition, it is easily seen

that the energies for which the difference between the log derivatives of the left- and right-

integrated wavefunctions vanishes are those for which the wavefunctions can be matched

smoothly. In more precise terms, the energies where

D(E) = yr(rM)− yl(rM) (14)

goes to zero are eigenvalues of eq. 1. The behavior of eq. 14 is shown in fig. 3. Qualitatively,

the behavior of D(E) is similar to that of the tangent function, where ranges of the input

space are partitioned into regions characterized by the function increasing monotonically

from negative infinity, crossing zero, then continuing on to positive infinity. Each of these

partitions corresponds to a range of energies where wavefunctions will have a specific number

of nodes – in other words, a locality surrounding a vibrational level.

The two-sided shooting and renormalized Numerov methods are identical in their use of

eqs. 10–13 to integrate wavefunctions at given energies, but employ differing strategies to

find the zeros of eq. 14. The shooting method offers a straightforward approach, where a
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Figure 3: Equation 14 plotted versus energy for the test case of a harmonic potential.
All quantities are in arbitrary units in order to show the qualitative behavior of
the log derivative difference function. It is easily seen that D(E) is partitioned into
regions in which the function monotonically increases from negative infinity, crosses
zero (marked by the black dots), and diverges to positive infinity. Each partition
corresponds to wavefunctions with a particular number of nodes, with the zero in
the partition corresponding to the exact energy of the associated vibrational mode.

grid of evenly spaced energy values is constructed, and the value of D(E) is calculated at

each one. Then, zeros can be found by interpolating Lagrange polynomials over appropriate

subsets of this array of values. In contrast, the renormalized Numerov method employs a

searching algorithm to find the zero corresponding to a specific vibrational level that works

in two stages. The first stage generates two guess energies that are iteratively adjusted

until they both lie in the partition corresponding to the desired vibrational level, which is

verified by counting the nodes in the calculated wavefunctions as the number of times R is

negative in the classically allowed region. The second stage then uses the secant method

with evaluations of D(E) at these guess energies to iteratively converge on the zero, with

convergence detected when the difference between the two guesses meets a given accuracy

goal.
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The two-sided shooting and renormalized Numerov methods both feature the strong

advantage of having runtime complexities that are linear in the size of the coordinate grid

and are substantial improvements to the cubic complexity of the matrix Numerov method.

These methods also provide ways to trade runtime for additional accuracy (or vice versa) by

increasing the density of the energy grid in the case of the shooting method or decreasing

the size of the accuracy threshold in the case of the renormalized Numerov method, without

affecting the accuracy of the integrated wavefunction solution. The major downside to

using these methods come from the fact that both require guessing information about the

approximate values of the desired energy solutions, which may not generally be available

prior to computation. Additionally, it is easily seen that the runtime of the shooting method

is linear in the grid of energies over which it computes D(E), making it typically unsuited

to tasks involving a search for energy solutions that may be distributed over large ranges.

Similarly, the renormalized Numerov method can only compute a single solution at a time,

so it is likewise unsuited for computation of large numbers of energies.

2.2 Evaluation of methods

To test the performances of these numerical methods and ultimately determine which is most

suited to the calculation of the energies of weakly bound strontium dimers, the methods were

each applied to the test case of an electron in a harmonic potential, V (x) = (1/2)meω
2x2

(with ℓ set to zero) where me denotes the electron free mass, and ω = 2π(1012) Hz. The

energy eigenvalues of the vibrational levels for this potential follow the usual analytically

derived formula, En = h̄ω(n+ 1/2).

Each method was used to compute the energies of the first fifteen vibrational levels

(n = 0, 1, . . . , 14) for varied coordinate and energy grid sizes Nx and NE. Nx and NE

were each varied independently while the other was held constant at a value of 1000 with

coordinate grid boundaries set at x = ±100 nm and energy grid boundaries set at E =

E0/2 and E = E14 + E0/2. The choice of spatial boundaries places them far enough into

the classically forbidden regions that the accuracies of the calculated solutions were not
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significantly impacted and the choice of energy grid boundaries gives a realistic simulation of

the case where the values of the desired energy solutions are approximately known. For each

combination of grid sizes, the root-mean-square of the differences between the numerically

and analytically computed solutions as well as the time needed to compute the energies as

an average of five trials were recorded. The results are shown in fig. 4.

As expected, the runtime of the shooting method is linear in the sizes of both the spatial

coordinate and energy grids, while the matrix Numerov runtime looks to be cubic in spatial

grid size, and that of the renormalized Numerov method is linear. The matrix Numerov

and renormalized Numerov methods are most accurate at large spatial grid sizes, and all

three are comparable for large enough energy grid sizes. These metrics indicate that for the

application of these methods to the calculation of the energies of a few weakly bound states of

strontium dimers detailed in chapter 3, where the considerations discussed at the beginning

of this chapter predict the need for large spatial grid sizes, the renormalized Numerov method

will perform best.
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3 Refinement of the strontium potential

To make a prediction of the 87Sr2 binding energy, an accurate representation of the potential

for the dimer states must first be determined. In [6], a functional form of this potential

was found by fitting data from Fourier-transform spectroscopy of many transitions found in

the ground states of the 88Sr2, 86Sr88Sr, and 87Sr88Sr isotopologues as well as the binding

energies of two weakly bound states for 88Sr2 measured by two-photon photoassociative

spectroscopy [5]. The formula for the potential is a three-part piecewise-smooth function of

the interatomic spacing comprising a short-range inner wall, a mid-range power law, and a

long-range asymptote. The full form is detailed in appendix A.

The energies of six weakly bound states of the 84Sr2 [3], 86Sr2 [4], and 88Sr2 [5] dimers are

experimentally known and listed in table 1. Energies are stated with respect to the energy of

the asymptote of two free atoms separated by a large distance at rest, giving negative energies

for bound states. In this chapter, these data are compared to the numerical solutions to the

Schrödinger equation for a potential of the form found in [6], and the resulting residuals are

then used to fit potential parameters by way of a gradient descent algorithm described in

appendix D.

The parameters n, C6, C8, C10, A, B, and Tm, which determine various aspects of the

short- and long-range portions of the potential, are adjusted by this method while the other

parameters are held fixed at the values found in [6]. n controls the divergence rate of the

inner wall diverging to positive infinity as the interatomic spacing r goes to zero, and C6,

C8, C10 control the long-range asymptote as r goes to infinity. The dependent parameters

A and B are used to maintain continuity and differentiability at the short- and mid-range

junction of the potential while Tm is used to maintain continuity at the mid- and long-range

junction.

The parameters of the long-range part of the potential, C6, C8, C10, are the main focus

of this thesis for two reasons. The first is that the new data included in this analysis

compared to those of Tiemann’s [6] set are weakly bound states, which strongly determine
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these parameters. Tiemann did not have access to many data points in this regime, and his

final potential was found to poorly predict the two 88Sr2 states [5] that he did include. The

values of the long-range parameters are significantly improved in this thesis. Second, the

long-range part of the potential is critical for describing low-energy scattering and weakly

bound states, which are of particular interest for ultracold physics, the main focus of the

Killian lab. A, B, Tm, n are also investigated to determine sensitivity to any short-range

part of the potential. The mid-range portion of the potential is neglected both to lessen the

computational load on the fit and because the deeply bound states in the Tiemann analysis

strongly determine the parameters of this part of the potential.

3.1 Fitting procedure

The parameters of the potential are determined by comparing the energies of each of the

ro-vibrational states listed in table 1 to their corresponding values found by numerically

solving eq. 1 in the case of the strontium molecular potential using a particular set of pa-

rameter values. The data set of measured energies is small and includes some points that

are measured to high precision, so the renormalized Numerov method, which offers fast and

precise calculation of specific vibrational levels as discussed in section 2.1, is used to complete

this task. The comparison of numerical solutions to experimental data is done by way of a

chi-squared value,

χ2 =
∑
i

(Ki −Mi)
2

σ2
i

(15)

where Ki and Mi are calculated and measured energy values, and σi are the uncertainties of

the measurements.

Since the values of the parameters in the potential affect the energy solutions to eq. 1, χ2

can be considered as a cost function of the parameters. Hence, the molecular potential is fit

to the experimental data by minimizing the χ2 cost function with respect to its parameters

using the gradient descent algorithm outlined in appendix D. A strong advantage to this

choice of cost function is that since χ2 is a sum of quadratic terms, the constituent residuals
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of which vary monotonically with the chosen potential parameters, it can be seen that χ2

is convex, implying that any local minimum of χ2 found by the descent algorithm is also

its global minimum. But since no analytical formula exists to precisely characterize eq. 15’s

dependence on the parameters, the partial derivatives involved in the descent processes are

taken numerically using a centered finite-difference formula,

∂χ2

∂x
(n)
i

≈
χ2

(
(1 + ε)x

(n)
i

)
− χ2

(
(1− ε)x

(n)
i

)
2εx

(n)
i

(16)

for a potential parameter xi at the n-th step of the descent and ε small enough, typically on

the order of 10−6. The fitting procedure stops when |∇χ2| is less than 10−3, which we define

as convergence.

3.2 Fit results

In the application of the gradient descent fitting procedure described in appendix D, three

key features of the potential introduced difficulties that made a determination of globally

optimal parameter values difficult to obtain. This section details three fits (labeled A, B,

and C) that were performed. Fit A takes a naive approach to show how these difficulties

affect the descent, while fits B and C implement different approaches to circumvent them.

Tiemann’s parameter values were used as initial guesses. The parameter values found by

each fitting procedure to minimize χ2 are compared in table 2.

The first of the mentioned features is that the location of the hand-off between the short-

and mid-range portions of the potential originally defined in [6], Ri = 3.963 Å, placed the

short range portion controlled by n entirely above zero energy, greatly reducing n’s effect

on the desired energy calculations. To remedy this, Ri was moved to 4.0 Å in fits A and B

in order to have n more strongly influence the determination of the states listed in table 1.

Second, significant correlations between the varied parameters were observed, in agreement

with the findings of [6]. These correlations were not rigorously characterized but were found

in practice to reduce the overall effectiveness of the descent algorithm. The third feature
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that impacted the fitting procedure was found to be a large variance in the strengths of the

cost function’s dependences on the targeted potential parameters. In particular, the cost

function was strongly dependent on n and weakly dependent on C8 and C10.

Since gradient descent is a so-called greedy algorithm – in that it chooses the path of

steepest descent at every iteration – descents including potential parameters that strongly

affect the cost function show minimization mainly with respect to those parameters, while

leaving others mostly unaffected. This makes the results highly dependent on the initial guess

of the descent as well as the criteria used to determine convergence. Fit A, a straightforward

fit of n, C6, C8, and C10, largely ignores C6, C8, and C10 by virtue of this fact, and pushes

the value of n up to a large, unphysical value.

Fit B attempts to solve this problem by breaking the fit into three stages. In the first

stage, only the parameters C6, C8, C10 on which χ2 has comparatively weak dependence are

subject to the descent; in the second, the first-stage parameters are held constant at their

minimized values while n is fit; in the third, all parameters are included in a final descent

together using their final values from the previous stages.

In fit C, n is fixed (with Ri reverting to its original value) and the fit of C6, C8, and

C10 is split into five stages. In the first stage, all three parameters are varied together.

To circumvent the effects of the cost function’s relatively weak dependence on C8 and C10,

the initial guess values of these parameters are displaced by some δ to increase the sizes of

their respective contributions to the gradient. The value of δ does not need to be small, but

δ = −0.6% was found to work well in practice. In the second and third stages, the number of

variables included in the descent is reduced down to C8 and C10, then only C10 respectively.

For the remaining two stages, the process is repeated in reverse order with the fourth stage

fitting C8 and C10 again and the fifth finally fitting all three. Every stage following the first

begins with the minimizing parameter values found in the previous stage.

The main advantage to using the approach taken by fit C is that the minimum value

of χ2 it finds is, by approximately an order of magnitude, the smallest of the three fitting

approaches described here, as shown in table 1. By this measure, the results of fit C (table 2)
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give the best model of the strontium potential. Among the downsides is firstly that n is not

varied, and so the sensitivity of the targeted states to the short-range portion of the potential

is not accounted for. But if it were included in the first stage of fit C a problem similar to

the one found in fit A would be encountered. The second downside to the approach of fit C

is that the value of δ is somewhat arbitrarily chosen and requires manual experimentation

to find. With a little clever automation, however, this can likely be mitigated.

It must be noted in table 2 that fits A, B, and C do not give the same final values of the fit

parameters. Thus it cannot be concluded that the global minimum of the cost function has

been found. As such, no estimations of systematic uncertainties can be made. The quoted

uncertainties for the freely varied parameters n, C6, C8, C10 are the amounts by which each

parameter must change in order to increase χ2 by 25% of its minimized value. Correlations

between parameters are not considered in this calculation.

Parameter Original [6] Fit A Fit B Fit C

Ri (Å) 3.963 4.0 4.0 3.963

n 12.362 65.26(8) 12.36(2) 12.362

C6 (107 cm−1Å6) 1.525(5) 1.52500(2) 1.516207(4) 1.5182802(5)

C8 (108 cm−1Å8) (5.159) 5.1590(2) 5.15899(5) 5.128046(9)

C10 (1010 cm−1Å10) 1.91(27) 1.9100(3) 1.91000(7) 1.89854(2)

Tm (cm−1) −1081.6384 −1081.6386 −1081.5730 −1081.5605

A (103 cm−1) −1.3328825 −3.6723791 −1.3583678 −1.3327952

B (1010 cm−1Ån) 3.321662099 4.50612649× 1031 3.38924659 3.32203364

χ2 6.648× 1010 3.446× 105 2.842× 104 2.809× 103

Table 2: Original potential parameter values compared to those found via fits A, B, and C. Values of
χ2 for each set of parameter values are listed for comparison on the bottom row. Uncertainties for
the parameter values from fits A, B, and C are given as statistical, estimated as the amount by which
the parameter must change to cause an increase of 25% in χ2 relative to its minimized value. Values
without uncertainties are either exact, since their values are calculated from other parameters to maintain
potential continuity (A, B, Tm), or fixed.

3.3 Discussion of results

In this section, fits A, B, and C are evaluated with respect to the quality of their predictions

of the energies in table 1 as well as a subset (table 3) of the transition energies between more
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deeply bound states used by [6] to generate the original values of the potential parameters.

Full listings of the calculated transitions using the results of fits A, B, and C and the original

parameter values are given in tables 1 and 3 respectively.

The subset of transition energies shown in table 3 are taken from a much larger set

of 15,645 experimentally determined transition lines that were used in [6] along with the
88Sr2 energies from [5] to determine the original potential parameter values. As such, the

transitions and 88Sr energies make for good points of comparison between the original and fit

parameters. The chosen transition energies also serve as good evaluations of fits A, B, and

C because they are an experimentally determined set of data outside the set on which the

fits were trained. The specific transitions listed in table 3 were chosen as a representative

subset of all those used in [6] and to measure how states more deeply bound in the potential

may be affected by changes to the targeted potential parameters.

As shown in tables 1 and 3, fit C provides the best description of all the targeted energies

and transitions by measure of the χ2 and RMS error values listed. In particular, it improves

the potential’s description of all the discussed weakly bound states, including the two 88Sr2

states that were used in Tiemann’s data set. Fit C reduces the χ2 value for these weakly

bound energies by seven orders of magnitude. Fit C also improves the descriptions of more

deeply bound states by measure of the transition energies in table 3, all of which were also

used in Tiemann’s data set. Although convergence to the global minimum of the cost function

was not established, it has nevertheless been shown that fit C offers a large improvement

to the strontium molecular potential, making it the most suited to the calculation of the
87Sr2 least-bound state in section 3.4. Considering this, the values of fit C (see table 2) are

recommended for future works.

3.4 Prediction of the 87Sr2 least-bound state

87Sr is the last naturally occurring isotope of strontium for which the binding energy of the

least-bound molecular state has not yet been measured. Like the other strontium isotopes (of

mass numbers 84, 86, and 88), its position on the periodic table as an alkaline earth element
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Transition
(ν1 → ν2, ℓ1 → ℓ2)

Measured
(cm−1)

Original
(cm−1)

Fit A
(cm−1)

Fit B
(cm−1)

Fit C
(cm−1)

24 → 25, 8 → 8 20.899 20.888 20.891 20.888 20.888
25 → 26, 8 → 8 20.149 20.148 20.153 20.149 20.148
26 → 27, 8 → 8 19.411 19.412 19.418 19.412 19.412
27 → 28, 8 → 8 18.679 18.680 18.686 18.680 18.680
28 → 29, 8 → 8 17.950 17.950 17.958 17.951 17.950
29 → 30, 8 → 8 17.220 17.225 17.233 17.225 17.225
30 → 31, 8 → 8 16.502 16.503 16.512 16.503 16.503
31 → 34, 8 → 8 45.200 45.211 45.244 45.212 45.211
34 → 35, 8 → 8 13.641 13.651 13.663 13.651 13.651
35 → 36, 8 → 8 12.942 12.948 12.959 12.949 12.948
36 → 37, 8 → 8 12.242 12.250 12.260 12.250 12.250
37 → 38, 8 → 8 11.548 11.556 11.566 11.556 11.556
38 → 39, 8 → 8 10.859 10.868 10.876 10.868 10.868
39 → 40, 8 → 8 10.175 10.185 10.192 10.185 10.185
40 → 41, 8 → 8 9.4981 9.5082 9.5133 9.5084 9.5082
41 → 42, 8 → 8 8.8282 8.8388 8.8419 8.8389 8.8388
42 → 43, 8 → 8 8.1660 8.1774 8.1784 8.1775 8.1774
43 → 44, 8 → 8 7.5130 7.5253 7.5240 7.5253 7.5253
44 → 45, 8 → 8 6.8714 6.2311 6.8803 6.8835 6.8836
45 → 46, 8 → 8 6.2411 6.9067 6.2487 6.2540 6.2542
46 → 47, 8 → 8 5.6256 5.6387 5.6314 5.6385 5.6387
47 → 48, 8 → 8 5.0261 5.0395 5.0305 5.0392 5.0395
48 → 49, 8 → 8 4.4455 4.4588 4.4483 4.4584 4.4587
49 → 50, 8 → 8 3.8878 3.8995 3.8880 3.8986 3.8989
50 → 51, 8 → 8 3.3541 3.3667 3.3546 3.3636 3.3632
51 → 52, 8 → 8 2.8493 2.8636 2.8510 2.8573 2.8559
52 → 53, 8 → 8 2.3778 2.3893 2.3767 2.3824 2.3811
53 → 54, 8 → 8 1.9424 1.9526 1.9404 1.9448 1.9435
54 → 55, 8 → 8 1.5421 1.5546 1.5431 1.5468 1.5456
55 → 56, 8 → 8 1.1889 1.1986 1.1881 1.1909 1.1900
56 → 57, 8 → 8 0.8769 0.8865 0.8772 0.8792 0.8785
57 → 58, 8 → 8 0.6088 0.6195 0.6115 0.6129 0.6124
58 → 59, 8 → 8 0.3913 0.3983 0.3918 0.3926 0.3922
59 → 60, 8 → 8 0.2196 0.2230 0.2179 0.2183 0.2181

Error RMS 9.107× 10−2 9.057× 10−2 8.069× 10−2 7.844× 10−2

Table 3: Measured 88Sr2 transition energies compared to counterparts computed using the original potential
parameter values from [6] as well as from fits A, B, and C. The root-mean-square values of the calculated−
measured errors for each set of potential parameters are included for comparison.
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gives it a closed-shell electron configuration. Unlike the other isotopes, however, its nucleus

is fermionic with spin I = 9/2. This, in combination with its closed outer shell, makes it

of interest to many potential experiments related to, for instance, degenerate Fermi gases,

optical clocks, and quantum information processing [2]. Numerical calculation of the least

bound state in 87Sr2 is expected to assist with efforts to measure the state experimentally.

In section 3.3 it was shown that fit C provides the best descriptions of all the discussed

energies and transitions. As such, it is also expected to give the best prediction of the 87Sr2

least bound state. Using these parameter values and the renormalized Numerov method

detailed in section 2.1, the ν = 62, ℓ = 0 ro-vibrational molecular state of 87Sr2 in its

electronic ground state is predicted to lie at −25.9(9) MHz.

To estimate the uncertainty of this figure, the differences between the observed and

calculated values of the binding energies for the weakly bound states (see the rightmost

column of table 1) were considered as percentages of their corresponding measured values.

The root-mean-square of these percentages, about 3.6%, was then considered to be the

relative uncertainty of the above calculated binding energy. This number must be taken as

a statistical uncertainty, as discussed in section 3.2.
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4 Conclusion and recommendations for future work

This thesis presents a refinement to the theoretical understanding of the long-range strontium

molecular potential. In ultracold physics, the main focus of the Killian lab, this aspect of

the potential is of critical importance to describing the scattering properties of strontium,

which lies at the heart of many interesting phenomena and potential experiments in the

low-temperature limit [2]. Working from the results of an analysis completed previously by

Tiemann [6], the values of parameters in the functional form of the potential were fit by

a gradient descent algorithm to a data set of six measurements of weakly bound states of

strontium dimers of various isotopes, four of which were not available to Tiemann.

Although this thesis was not able to show that the fit converged to the global opti-

mum solution, the resulting new values of parameters in the potential nevertheless improved

its descriptions of all bound states that were discussed by a considerable margin, includ-

ing those used in Tiemann’s analysis. This work’s application of gradient descent to the

potential-fitting problem reveals challenges for the algorithm’s formalism that arise from

issues discussed in section 3.2. For future works seeking to continue the refinement of the

potential’s parameters, a remedy may be found in a method of rescaling the parameters’

values such that the disparities in their contributions to the gradient of the cost function is

reduced.

Work similar to this thesis has been done for isotopes of ytterbium [11]. In this analysis,

the measured binding energies for bound states in ytterbium isotopes were fit via numerically

computed solutions for these states to an effective molecular potential of the form

V (r) = −C6

r6

(
1− σ6

r6

)
− C8

r8
+B(r)J(J + 1) (17)

where the first term gives a Lennard-Jones potential, the last term involving B(r) = h̄2/(2µr2)

is due to molecular rotation, and the C8 term is the dipole-quadrupole interaction. Future
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works may find a modified Lennard-Jones potential similar to eq. 17, possibly with an addi-

tional C10 term, more easily fit to the strontium experimental data.

Following the refinement of the molecular potential, the binding energy of the ν = 62,

ℓ = 0 electronic ground state of the 87Sr2 dimer was predicted to be −25.9(9) MHz. The

uncertainty in this prediction is estimated from the accuracies of the potential’s descriptions

of the other weakly bound states that were included in the fit. As such, it should be

considered a statistical uncertainty, and is expected to improve easily with improvements

to the fitting process. This prediction is hoped to be confirmed experimentally in the near

future.

The work presented in this thesis has hopefully demonstrated the power and applicability

of numerical computation. Although some issues arose in the implementation of the gradient

descent algorithm, it is at any rate true that findings here have generated a significantly

improved understanding of the strontium molecular potential and a prediction of the least-

bound molecular state of the last strontium isotope for which this state’s energy has not

been measured. Accompanying this is the creation of a generalized tool to numerically solve

the Schrödinger equation and assist with a wide variety of future projects.
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A Description of the strontium molecular potential

V (r) =



A+
B

rn
0 ≤ r < Ri

Tm +
∑
i≥1

ai

(
r −Rm

r + bRm

)i

Ri ≤ r ≤ Ra

U∞ − C6

r6
− C8

r8
− C10

r10
r < Ra

Parameters

n 12.362

A −1.3328825× 103 cm−1

B 3.321662099× 1010 cm−1Ån

b −0.17

Rm 4.6719018 Å
Tm −1081.6384 cm−1

a1 −6.50× 10−2 cm−1 a11 4.606463055× 107 cm−1

a2 1.5939056× 104 cm−1 a12 3.74666573× 107 cm−1

a3 −2.9646778× 104 cm−1 a13 −5.439157146× 108 cm−1

a4 −6.6269777× 103 cm−1 a14 9.364833940× 108 cm−1

a5 4.4952358× 104 cm−1 a15 1.387879748× 109 cm−1

a6 8.709016× 103 cm−1 a16 −8.4009054730× 109 cm−1

a7 −1.0054929× 105 cm−1 a17 1.5781752106× 1010 cm−1

a8 5.94784152× 105 cm−1 a18 −1.5721037673× 1010 cm−1

a9 −9.95239126× 105 cm−1 a19 8.376043061× 109 cm−1

a10 −1.14496717× 107 cm−1 a20 −1.88984880× 109 cm−1

C6 1.525× 107 cm−1Å6

C8 5.159× 108 cm−1Å8

C10 1.91× 1010 cm−1Å10

U∞ 0

Ri 3.963 Å
Ra 10.5 Å

Table 4: Numerical values of the parameters in the strontium potential taken from [6] reprinted here for
convenience. Values are grouped by corresponding part of the potential.
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B Evaluation of the energy-wavefunction coupling method

The core idea behind the energy-wavefunction coupling (EWC) method [10] lies in the con-

struction of a vector quantity containing sampled wavefunction values as well as the energy

of a poor initial guess solution to the Schrödinger equation. This composite vector is defined

formally as

y = (E, u1, u2, . . . , uN−1)
T (18)

where the guessed wavefunction values ui = u(ri) over the grid follow the convention defined

in chapter 2 and the wavefunction’s energy E replaces the first of the sampled wavefunction

values u0, since it is normally set to zero as a boundary condition. A second vector F =

(F0, . . . , FN−1)
T evaluating the accuracy of y as a solution to the Schrödinger equation is

also defined as

Fi(y) =



N−1∑
i=1

[
|ui|2δr

]
− 1 i = 0

ui+1 − 2ui + ui−1

δr2
+Qiui 1 ≤ i ≤ N − 2

ui i = N − 1

(19)

with u0 implicitly set equal to uN−1. These quantities Fi compute the normalization integral

of the guessed wavefunction for i = 0 as well as its compliance with the Schrödinger equation

at each point and zero-value boundary conditions for 1 ≤ i ≤ N−2 and i = N−1 respectively.

If y is a good solution, F is zero.

With these considerations, a linear system subjecting y to the constraint that F tend to

zero can be constructed and solved iteratively using Newton’s method. For each iteration of

the method, the solution y is updated according to

y = ỹ + δy,
[
∂F
∂y

]
δy = −F̃ (20)
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where F̃ is F computed for the approximate solution ỹ, and [∂F/∂y ] is the Jacobi matrix

containing the appropriate derivatives for the Newton method. Iteration can be halted when

the magnitude of the corrections passes below some pre-set threshold. It is claimed in [10]

that only 5-7 iterations are typically required for convergence.

Looking at eq. 19, it can be noted that the first term in Fi for 1 ≤ i ≤ N−2 uses a centered

finite difference formula as an approximation for the second-order partial derivative term in

the Schrödinger equation, which is good up to a O(δr2) error term. However, Numerov’s

method [7], whose derived methods are used to compute the initial guess wavefunctions and

energies, features a much smaller error term that is O(δr6). Thus when the EWC method

is applied to these initial guesses, the Newton’s method corrections δy are computed with

greater error than the initial guess was to begin with, leading to an eventual decrease in

the accuracy of the solution. Figure 5 shows the result of applying the EWC method to

the solutions computed for the harmonic oscillator test case detailed in section 2.2 with an

artificial cap on the number of Newton’s method iteration set at 20. It can be easily seen that

substantial increases in the errors of the of the calculated n = 0 and n = 1 energy solutions

occur after the EWC method is applied. The solutions at larger n suffer similar increases in

error that, while not as large as those of the first two solutions, show a significantly larger

rate of increase as n grows compared to when the method is not applied.

Additionally, the application of the EWC method comes at the considerable cost of

inverting an N ×N matrix at each iteration of the Newton’s method. When the energies of

the desired solutions are large compared to a given potential’s minimum, as in the case of

the weakly bound states of strontium dimers, N is necessarily large in order to both resolve

the fine oscillations of wavefunctions in classically allowed regions and account for large

extensions into classically forbidden regions. Thus the use of this method becomes entirely

untenable.
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Figure 5: Errors of computed solutions to the Schrödinger equation for the harmonic
oscillator test case described in section 2.2 that used the EWC method (orange),
compared to those that did not (blue). Errors are measured as the absolute dif-
ference between the computed and analytical solutions’ energies for a given vibra-
tional level n in units of Eα = h̄2/2meα

2 for α = 10−9 m. Solutions computed
with the EWC method show greater error that increases with growing n at a rate
substantially greater than those without. The number of iterations
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C Notes on the codebase

The numerical methods described in section 2.1 along with the gradient descent algorithm

from section 3.1 and appendix D were implemented in Python. Python is a high-level,

interpreted programming language that lends itself particularly to portability, making it a

popular choice for scientific computation. The tools for this thesis are assembled in the form

of a Python library called libSr hosted in a repository on GitLab at https://gitlab.com/

whooie/srsolve. (Despite the name, however, the library methods are generally applicable

to any one-dimensional Schrödinger equation.) The repository’s README file and docstrings

offer more exact usage directions for the constituent functions provided in the library.

The parts of the library used to accomplish the various components of this thesis are

divided into sub-modules of libSr, with the most integral to this thesis being libSr.solve,

libSr.potential, and libSr.optim. The libSr.solve module implements all the nu-

merical methods described in chapter 2, and provides the Solver and SrSolver classes

as the main interfaces to those methods. The former solves the Schrödinger equation for

any potential function, while the latter provides additional class methods specialized to the

strontium molecular potential. All computation performed in this module is with respect

to scaled length and energy quantities r̃ = r/α and Ẽ = E/Eα for Eα = h̄2/2µα, where

α is a user-defined natural length scale (which itself should be provided in SI units) and µ

is the reduced mass, to simplify relevant equations and reduce memory usage. libSr.phys

provides convenient functions to convert between these scaled units and SI, as well as values

of physical constants taken from the National Institute of Standards and Technology.

libSr.potential defines functions to compute Tiemann’s [6] strontium molecular po-

tential from its analytical form, as well as its first and second derivatives. This module

also provides convenient functions to compute quantities related to the potential such as its

minimum, range, and outer turning point. The potential and its associated quantities can

be calculated in either its given units (cm−1) or α-scaled units. The libSr.potentialMLR

module contains all of these functions for an alternative form of the strontium potential (also
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given by Tiemann [6]) that at one point was considered for this thesis, but ultimately not

used.

libSr.optim provides functions implementing the gradient descent algorithm used to fit

the molecular potential. The main interface to this module is the optim.optim function,

which drives the entire process of taking derivatives of the χ2 cost function, computing step

sizes, converging to the cost function minimum, and ultimately writing results to a file.

Finally, the auxiliary modules libSr.interp, libSr.data, and libSr.misc modules

provide additional functions and data to support the operation of the main modules listed

above. libSr.interp module provides functions for interpolating Lagrange polynomials

and finding zeros that are needed by the two-sided shooting method. The smaller modules

libSr.data and libSr.misc provide the experimental data found in table 1 and optional

type-checking functionality for the library, respectively.

All of these modules are implemented in pure Python for maximum portability, but one

significant consequence arising from this language’s dynamic typing and lack of a just-in-

time (JIT) compiler is that tasks that involve large amounts of repeated computation, such

as numerical integration and gradient descent, can be slower than when implemented in

other systems that do feature JIT compilers like MATLAB and Mathematica. To overcome

this while maintaining portability, libSr.solve, libSr.potential, libSr.potentialMLR,

libSr.interp, and optim, which contain the library’s most computationally intensive func-

tions, are also implemented in Cython as *.pyx files. Cython is an optimizing static compiler

for both Python and the Cython programming language, which extends Python to add sup-

port for declaring static C types and calling C functions. When called, the Cython compiler

generates and manages the compilation of C code from a Python or Cython source to pro-

duce equivalent (though much more efficient) C library extensions that are callable from a

normal Python program. The end result is a substantial speed-up to the program at the

cost of an initial compile step. The generated C code is additionally retained, allowing for

the compilation of these C extensions even on systems that lack a Cython installation.
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The following setup instructions apply to a standard BASH terminal. To use the library,

the best-practice recommendation is to first create a python virtual environment before

cloning the repository:

1 python -m venv srsolve_venv
2 cd srsolve_venv
3 source ./bin/activate
4 git clone https://gitlab.com/whooie/srsolve.git

The only true dependency needed for operation is NumPy, but users also may wish to install

Matplotlib for plotting or Cython to compile C extensions. These are available from the

Python Package Index.

5 python -m pip install numpy matplotlib cython

Then, if desired, the C extensions can be compiled with

6 python ./srsolve/setup.py build_ext --inplace

As mentioned above, they can also be compiled from the generated C files included in the

repository using the provided makefile

7 cd srsolve
8 make

with the caveats that gcc must be installed (it must be sourced from outside the Python

Package Index) and that changes made to the source *.pyx files will have no effect upon

recompilation. Once this is completed, the elements of libSr can be imported from Python

programs as normal.
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D Parameter fitting by gradient descent

Gradient descent is an algorithm used to minimize a given function with respect to any

number of variables. It is most famously known as the underlying mechanism by which

machine learning models are trained, but is useful to this project for its simplicity and

subsequent wide applicability.

The core of the algorithm revolves around the basic observation from multi-variable

calculus stating that the direction of steepest increase in some function f of several variables

in the small locality around x is given by that of its gradient ∇f(x). It follows that the

direction of steepest descent is the opposite, given by −∇f(x). So given an initial guess

vector x0 of arguments to the function, it is easy to see that iteratively updating xn according

to

xn+1 = xn − γ∇f(xn) (21)

for γ ∈ R+ small enough will cause xn to converge towards the desired vector xmin that

minimizes f . The main advantage to using gradient descent over other methods (for exam-

ple regression methods) lies in its comparatively low need for sampling of f(x), provided

convergence times are short.

To improve convergence rates, γ (called the ‘step size’) is allowed to vary during the

descent process according to a formula from [12],

γ → Ln =
|(xn − xn−1) · (∇f(xn)−∇f(xn−1))|

∥∇f(xn)−∇f(xn−1)∥2
(22)

This variable step size was found to greatly improve the convergence rate of the descent in

practice by alleviating problems arising from a constant step size being too small in early

steps when the descent is far from the desired minimum, and too large in late steps when

the descent is very close. In cases where the slope of f appears locally to be the same

between successive steps of the descent, the denominator of eq. 22 is small, causing Ln to

increase. This allows the descent to quickly traverse regions that would otherwise require a
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large number of steps to cover. Conversely, when the slope of f appears to change rapidly

between successive steps, Ln decreases, such that the descent is able to better resolve the

shape of f . Then when the descent nears a minimum, ∇f is more likely to change directions

between steps. Since the direction of a step taken (given by xn − xn−1) is in the direction

of ∇f(xn−1), the step and the change in the gradient misalign, causing the inner product in

the numerator of eq. 22 to decrease. The overall effect is to decrease the size of Ln in order

to avoid overshooting the minimum.
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